Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Self-Assembly of Fullerene C60 at Liquid-Liquid Interface
2.3. Characterizations
2.4. Vapor Sensing by Quartz Crystal Microbalance (QCM)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Kumar, G.S.; Shrestha, R.G.; Ji, Q.; Hill, J.P.; Ariga, K.; Acharya, S.; Shrestha, L.K. Hierarchical Heterostructure of Ag-Nanoparticle Decorated Fullerene Nanorods (Ag-FNRs) as an Effective Single Particle Freestanding SERS Substrate. Phys. Chem. Chem. Phys. 2018, 20, 18873–18878. [Google Scholar] [CrossRef]
- Bairi, P.; Shrestha, R.G.; Hill, J.P.; Nishimura, T.; Ariga, K.; Shrestha, L.K. Mesoporous Graphitic Carbon Microtubes Derived from Fullerene C70 Tubes as a High Performance Electrode Material for Advanced Supercapacitors. J. Mater. Chem. A 2016, 4, 13899–13906. [Google Scholar] [CrossRef]
- Zheng, S.; Ju, H.; Lu, X. A High-Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures. Adv. Energy Mater. 2016, 5, 1500871. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Shrestha, L.K.; Khan, A.H.; Kumar, G.S.; Acharya, S.; Ariga, K. Demonstration of Ultrarapid Interfacial Formation of 1D Fullerene Nanorods with Photovoltaic Properties. ACS Appl. Mater. Interfaces 2014, 6, 15597–15603. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Rao, A.M.; Zhou, P.; Wang, K.-A.; Hager, G.T.; Holden, J.M.; Wang, Y.; Lee, W.-T.; Bi, X.-X.; Eklund, P.C.; Cornett, D.S.; et al. Photoinduced Polymerization of Solid C60 films. Science 1993, 259, 955–957. [Google Scholar] [CrossRef]
- Prato, M. [60] Fullerene Chemistry for Materials Science Applications. J. Mater. Chem. 1997, 7, 1097–1109. [Google Scholar] [CrossRef]
- Ueda, A. Development of Novel Functional Organic Crystals by Utilizing Proton- and π-Electron-Donating/Accepting Abilities. Bull. Chem. Soc. Jpn. 2017, 90, 1181–1188. [Google Scholar] [CrossRef]
- Sakamoto, R. Bottom-up Creation of Functional Low-Dimensional Materials Based on Metal Complexes. Bull. Chem. Soc. Jpn. 2017, 90, 272–278. [Google Scholar] [CrossRef]
- Hiroto, S. Innovative Synthesis and Functions of Curved π-Conjugated Molecules. Bull. Chem. Soc. Jpn. 2018, 91, 829–838. [Google Scholar] [CrossRef]
- Cherumukkil, S.; Vedhanarayanan, B.; Das, G.; Praveen, V.K.; Ajayaghosh, A. Self-Assembly of Bodipy-Derived Extended π-Systems. Bull. Chem. Soc. Jpn. 2018, 91, 100–120. [Google Scholar] [CrossRef]
- Matsuura, K. Construction of Functional Biomaterials by Biomolecular Self-Assembly. Bull. Chem. Soc. Jpn. 2017, 90, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Sawada, T.; Serizawa, T. Filamentous Viruses as Building Blocks for Hierarchical Self-Assembly toward Functional Soft Materials. Bull. Chem. Soc. Jpn. 2018, 91, 455–466. [Google Scholar] [CrossRef]
- Nakamura, E.; Isobe, H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36, 807–815. [Google Scholar] [CrossRef]
- Thompson, B.C.; Fréchet, J.M.J. Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2007, 47, 58–77. [Google Scholar] [CrossRef]
- Segura, J.L.; Martín, N.; Guldi, D.M. Materials for Organic Solar Cells: The C60/-conjugated Oligomer Approach. Chem. Soc. Rev. 2005, 34, 31–47. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells. J. Mater. Chem. 2006, 16, 45–61. [Google Scholar] [CrossRef]
- Babu, S.S.; Möhwald, H.; Nakanishi, T. Recent Progress in Morphology Control of Supramolecular Fullerene Assemblies and its Applications. Chem. Soc. Rev. 2010, 39, 4021–4035. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Jiang, L.; Luo, H.; Xiao, S.; Fang, H.; Li, H.; Zhu, D.; Yu, D.; Xu, J.; et al. Imaging As-Grown [60] Fullerene Nanotubes by Template Technique. J. Am. Chem. Soc. 2002, 124, 13370–13371. [Google Scholar] [CrossRef]
- Tachibana, M.; Kobayashi, K.; Uchida, T.; Kojima, K.; Tanimura, M.; Miyazawa, K. Photo-assisted Growth and Polymerization of C60 Nanowhiskers. Chem. Phys. Lett. 2003, 374, 279–285. [Google Scholar] [CrossRef]
- Wang, L.; Liu, B.; Liu, D.; Yao, M.; Hou, Y.; Yu, S.; Cui, T.; Li, D.; Zou, G.; Iwasiewicz, A.; et al. Synthesis of Thin, Rectangular C60 Nanorods Using m-Xylene as a Shape Controller. Adv. Mater. 2006, 18, 1883–1888. [Google Scholar] [CrossRef]
- Geng, J.; Zhou, W.; Skelton, P.; Yue, W.; Kinloch, I.A.; Windle, A.H.; Johnson, B.F.G. Crystal Structure and Growth Mechanism of Unusually Long Fullerene (C60) nanowire. J. Am. Chem. Soc. 2008, 130, 2527–2534. [Google Scholar] [CrossRef]
- Shin, H.S.; Yoon, S.M.; Tang, Q.; Chon, B.; Joo, T.; Choi, H.C. Highly Selective Synthesis of C60 Disks on Graphite Substrate by a Vapor-Solid Process. Angew. Chem. Int. Ed. 2008, 47, 693–696. [Google Scholar] [CrossRef]
- Briseno, A.L.; Mannsfeld, S.C.B.; Ling, M.M.; Liu, S.; Tseng, R.J.; Reese, C.; Roberts, M.E.; Yang, Y.; Wudl, F.; Bao, Z. Patterning Organic Single-Crystal Transistor Arrays. Nature 2006, 444, 913–917. [Google Scholar] [CrossRef]
- Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. C60 Nanowhiskers Formed by the Liquid-Liquid Interfacial Precipitation Method. J. Mater. Res. 2002, 17, 83–88. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Ji, Q.; Mori, T.; Miyazawa, K.; Yamauchi, Y.; Hill, J.P.; Ariga, K. Fullerene nanoarchitectonics: From zero to higher dimensions. Chem. Asian J. 2013, 8, 1662–1679. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Yamauchi, Y.; Hill, J.P.; Miyazawa, K.; Ariga, K. Fullerene crystals with bimodal pore architectures consisting of macropores and mespores. J. Am. Chem. Soc. 2013, 135, 586–589. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shrestha, R.G.; Yamauchi, Y.; Hill, J.P.; Nishimura, T.; Miyazawa, K.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K. Nanoporous Carbon Tubes from Fullerene Crystals as the π-electron Carbon Source. Angew. Chem. Int. Ed. 2015, 54, 951–955. [Google Scholar] [CrossRef]
- Sathish, M.; Miyazawa, K.; Hill, J.P.; Ariga, K. Solvent Engineering for Shape-Shifter Pure Fullerene (C60). J. Am. Chem. Soc. 2009, 131, 6372–6373. [Google Scholar] [CrossRef]
- Miyazawa, K.; Kuwasaki, Y.; Hamamoto, K.; Nagata, S.; Obayashi, A.; Kuwabara, M. Structural Characterization of C60 Nanowhiskers Formed by the Liquid/Liquid Interfacial Precipitation Method. Surf. Interface Anal. 2003, 35, 117–120. [Google Scholar] [CrossRef]
- Sathish, M.; Miyazawa, K.; Sasaki, T. Nanoporous Fullerene Nanowhiskers. Chem. Mater. 2007, 19, 2398–2400. [Google Scholar] [CrossRef]
- Masuhara, A.; Tan, Z.; Kasai, H.; Nakanishi, H.; Oikawa, H. Fullerene Fine Crystals with Unique Shapes and Controlled Size. Jpn. J. Appl. Phys. 2009, 48, 050206. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, W.-S.; Park, S.-I.; Yoon, T.-S.; Chung, B.H. Synthesis and Characterization of Various-Shaped C60 Microcrystals Using Alcohols as Antisolvents. J. Phys. Chem. C 2010, 114, 12976–12981. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Hill, J.P.; Tsuruoka, T.; Miyazawa, K.; Ariga, K. Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at liquid-liquid interface. Langmuir 2013, 29, 7195–7202. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shrestha, R.G.; Hill, J.P.; Tsuruoka, T.; Ji, Q.; Nishimura, T.; Ariga, K. Surfactant-Triggered Nanoarchitectonics of Fullerene C60 Crystals at a Liquid-Liquid Interface. Langmuir 2016, 32, 12511–12519. [Google Scholar] [CrossRef]
- Bairi, P.; Tsuruoka, T.; Acharya, S.; Ji, Q.; Hill, J.P.; Ariga, K.; Yamauchi, Y.; Shrestha, L.K. Mesoporous Fullerene C70 Cubes with Highly Crystalline Frameworks and Unusual Enhancement Photoluminescence Properties. Mater. Horiz. 2018, 5, 285–290. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Intentional Closing/Opening of “Hole-in-Cube” in Fullerene C70 Crystals with Microscopic Recognition Properties. ACS Nano 2017, 11, 7790–7796. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Sathish, M.; Hill, J.P.; Miyazawa, K.; Tsuruoka, T.; Sanchez-Ballester, N.; Honma, I.; Ji, Q.; Ariga, K. Alcohol-induced rearrangement of Olmstead’s crystalline Ag(I)-fullerene heteronanostructure yields ‘Bucky Cubes’. J. Mater. Chem. C 2013, 1, 1174–1181. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Nakanishi, W.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano 2016, 10, 6631–6637. [Google Scholar] [CrossRef]
- Oaki, Y. Morphology Design of Crystalline and Polymer Materials from Nanoscopic to Macroscopic Scales. Bull. Chem. Soc. Jpn. 2017, 90, 776–788. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Ghosh, S.; Pradhan, B.; Dalui, A.; Shresth, L.K.; Acharya, S.; Ariga, K. Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bull. Chem. Soc. Jpn. 2017, 90, 627–648. [Google Scholar] [CrossRef] [Green Version]
- Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry Can Make Strict and Fuzzy Controls for Biosystems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bull. Chem. Soc. Jpn. 2017, 90, 967–1004. [Google Scholar] [CrossRef]
- Komiyama, M.; Mori, T.; Ariga, K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Joseph, S.; Baskar, A.V.; Park, D.-H.; Chandra, G.; Umapathy, S.; Talapanei, S.N.; Vinu, A. Ordered Mesoporous C70 with Highly Crystalline Pore Walls for Energy Applications. Adv. Funct. Mater. 2018, 28, 1803701. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Joseph, S.; Ilbeygi, H.; Park, D.-H.; Sarkar, S.; Chandra, G.; Umapathy, S.; Srinivasan, S.; Talapanei, S.N.; Vinu, A. Highly Crystalline Mesoporous C60 with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angew. Chem. 2018, 130, 578–582. [Google Scholar] [CrossRef]
- Minato, J.; Miyazawa, K. Solvated Structure of C60 Nanowhiskers. Carbon 2005, 43, 2837–2841. [Google Scholar] [CrossRef]
- Rana, M.; Bharathanatha, R.R.; Gautam, U.K. Kinetically Stabilized C60-toluene Solvate Nanostructures with a Discrete Absorption Edge Enabling Supramolecular Topotactic Molecular Exchange. Carbon 2014, 74, 44–53. [Google Scholar] [CrossRef]
- Kuzmany, H.; Matus, M.; Burger, B.; Winter, J. Raman Scattering in C60 Fullerenes and Fullerides. Adv. Mater. 1994, 6, 731–745. [Google Scholar] [CrossRef]
- Cavallari, M.R.; Braga, G.S.; da Silva, M.F.P.; Izquierdo, J.E.E.; Paterno, L.G.; Dirani, E.A.T.; Kymissis, I.; Fonseca, F.J. A Hybrid Electronic Nose and Tongue for the Detection of Ketones: Improved Sensor Orthogonality Using Graphene Oxide-Based Detectors. IEEE Sens. J. 2017, 17, 1971–1980. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Yu, X.; Chen, X.; Ding, X.; Zhao, X. A High-Sensitive Humidity Sensor Based on Water Soluble Composite Material of Fullerene and Graphene Oxide. IEEE Sens. J. 2018, 18, 962–966. [Google Scholar] [CrossRef]
- Bahoumina, P.; Hallil, H.; Lachaud, J.-L.; Rebière, D.; Dejous, C.; Abdelghani, A.; Frigui, K.; Bila, S.; Baillargeat, D.; Zhang, Q.; et al. Chemical Sensor Based on a Novel Capacitive Microwave Flexible Transducer with Polymer Nanocomposite-Carbon Nanotube Sensitive Film. Microsyst. Technol. 2018. [Google Scholar] [CrossRef]
- Nasri, A.; Boubaker, A.; Hafsi, B.; Khaldi, W.; Kalboussi, A. Highly-Sensitivity Sensor Using C60-Single Molecule Transistor. IEEE Sens. J. 2018, 18, 248–254. [Google Scholar] [CrossRef]
- Ding, X.; Chen, X.; Chen, X.; Zhao, X.; Li, N. A QCM Humidity Sensor Based on Fullerene/Graphene Oxide Nanocomposite with High Quality Factor. Sens. Actuators B Chem. 2018, 266, 534–542. [Google Scholar] [CrossRef]
- Magana, J.R.; Kolen’ko, Y.V.; Deepak, F.L.; Solans, C.; Shrestha, R.G.; Hill, J.P.; Ariga, K.; Shrestha, L.K.; Rodriguez-Abreu, C. From Chromonic Self-Assembly to Hollow Carbon Nanofibers for Efficient Materials in Supercapacitor and Vapor Sensing Applications. ACS Appl. Mater. Interfaces 2016, 8, 31231–31238. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Adhikari, L.; Shrestha, R.G.; Adhikari, M.P.; Adhikari, R.; Hill, J.P.; Pradhananga, R.R.; Ariga, K. Nanoporous Carbon Materials with Enhanced Supercapacitance Performance and Non-Aromatic Chemical Sensing with C1/C2 Alcohol Discrimination. Sci. Technol. Adv. Mater. 2016, 17, 483–492. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Kim, T.Y.; Losic, D.; Tung, T.T. Recent Advances in Engineered Graphene and Composite for Detection of Volatile Organic Compounds (VOCs) and Non-Invasive Diseases Diagnosis. Carbon 2016, 110, 97–129. [Google Scholar] [CrossRef]
- Vimalanathan, K.; Shrestha, R.G.; Zhang, Z.; Zho, J.; Nakayama, T.; Raston, C.L. Surfactant-Free Fabrication of C60 Nanotubules Under Shear. Angew. Chem. Int. Ed. 2017, 56, 8398–8401. [Google Scholar] [CrossRef]
- Teradal, N.L.; Marx, S.; Morag, A.; Jelinek, R. Porous Graphene Oxide Chemi-Capacitor Vapor Sensor Array. J. Mater. Chem. C. 2017, 5, 1128–1135. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furuuchi, N.; Shrestha, R.G.; Yamashita, Y.; Hirao, T.; Ariga, K.; Shrestha, L.K. Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors 2019, 19, 267. https://doi.org/10.3390/s19020267
Furuuchi N, Shrestha RG, Yamashita Y, Hirao T, Ariga K, Shrestha LK. Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors. 2019; 19(2):267. https://doi.org/10.3390/s19020267
Chicago/Turabian StyleFuruuchi, Natsumi, Rekha Goswami Shrestha, Yuji Yamashita, Tetsuji Hirao, Katsuhiko Ariga, and Lok Kumar Shrestha. 2019. "Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors" Sensors 19, no. 2: 267. https://doi.org/10.3390/s19020267
APA StyleFuruuchi, N., Shrestha, R. G., Yamashita, Y., Hirao, T., Ariga, K., & Shrestha, L. K. (2019). Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors, 19(2), 267. https://doi.org/10.3390/s19020267