Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Existing Technologies
2.2. Custom PCBs
2.3. Gateway and Backhaul
2.4. Compatibility with Other Devices
3. Software
3.1. Backhaul Firmware
3.2. Elemental Backend
- VerneMQ—MQTT (Message Queuing Telemetry Transport) message broker
- InfluxDB—Timeseries database
- Grafana—Timeseries visualization
- A middleware application to connect all components
3.3. Data Visualization
4. Results and Discussion
4.1. Long-Term Data Collection and Analysis
4.2. Full-Home Monitoring Solution
4.3. Fault and Anomaly Detection and Diagnostics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ASHRAE. Performance Measurement Protocols for Commercial Buildings; ASHRAE: Atlanta, GA, USA, 2010. [Google Scholar]
- Heinzerling, D.; Schiavon, S.; Webster, T.; Arens, E. Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Build. Environ. 2013, 70, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.W.; Mourshed, M.; Mundow, D.; Sisinni, M.; Rezgui, Y. Building energy metering and environmental monitoring – A state-of-the-art review and directions for future research. Energy Build. 2016, 120, 85–102. [Google Scholar] [CrossRef]
- Ramos, T.; Stephens, B. Tools to improve built environment data collection for indoor microbial ecology investigations. Build. Environ. 2014, 81, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Ferdoush, S.; Li, X. Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications. Procedia Comput. Sci. 2014, 34, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Karami, M.; McMorrow, G.V.; Wang, L. Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system. J. Build. Eng. 2018, 19, 412–419. [Google Scholar] [CrossRef]
- Peng, C.; Qian, K.; Wang, C. Design and Application of a VOC-Monitoring System Based on a ZigBee Wireless Sensor Network. IEEE Sens. J. 2015, 15, 2255–2268. [Google Scholar] [CrossRef]
- Abraham, S.; Li, X. Design of A Low-Cost Wireless Indoor Air Quality Sensor Network System. Int. J. Wirel. Inf. Netw. 2016, 23, 57–65. [Google Scholar] [CrossRef]
- Bhunia, S.S.; Roy, S.; Mukherjee, N. IEMS: Indoor environment monitoring system using ZigBee wireless sensor network. In Proceedings of the 2011 International Conference on Communication, Computing & Security—ICCCS ’11, Rourkela, Odisha, India, 12–14 February 2011; ACM Press: Rourkela, Odisha, India, 2011; p. 142. [Google Scholar]
- du Plessis, R.; Kumar, A.; Hancke, G.; Silva, B. A wireless system for indoor air quality monitoring. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; IEEE: Florence, Italy, 2016; pp. 5409–5414. [Google Scholar]
- Kumar, P.; Martani, C.; Morawska, L.; Norford, L.; Choudhary, R.; Bell, M.; Leach, M. Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build. 2016, 111, 145–153. [Google Scholar] [CrossRef]
- Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 2016, 560–561, 150–159. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, L.; Yang, D.; Liu, H. Air-Sense: Indoor environment monitoring evaluation system based on ZigBee network. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012208. [Google Scholar] [CrossRef]
- Kim, J.-J.; Jung, S.K.; Kim, J.T. Wireless Monitoring of Indoor Air Quality by a Sensor Network. Indoor Built Environ. 2010, 19, 145–150. [Google Scholar] [CrossRef]
- Brunelli, D.; Minakov, I.; Passerone, R.; Rossi, M. POVOMON: An Ad-hoc Wireless Sensor Network for indoor environmental monitoring. In Proceedings of the 2014 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems Proceedings, Naples, Italy, 17–18 September 2014; IEEE: Naples, Italy, 2014; pp. 1–6. [Google Scholar]
- Jang, W.-S.; Healy, W.M.; Skibniewski, M.J. Wireless sensor networks as part of a web-based building environmental monitoring system. Autom. Constr. 2008, 17, 729–736. [Google Scholar] [CrossRef]
- Ali, A.S.; Zanzinger, Z.; Debose, D.; Stephens, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Build. Environ. 2016, 100, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Weekly, K.; Jin, M.; Zou, H.; Hsu, C.; Soyza, C.; Bayen, A.; Spanos, C. Building-in-Briefcase: A Rapidly-Deployable Environmental Sensor Suite for the Smart Building. Sensors 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy Optimization and Next-Generation Building Management Systems. IEEE Internet Things J. 2017, 4, 269–283. [Google Scholar] [CrossRef]
- rosetta-home/rosetta_home. Rosetta Home 2.0 Is an Open Source Building Performance Monitoring Platform. Available online: https://github.com/rosetta-home/rosetta_home (accessed on 21 May 2019).
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Bamodu, O.; Xia, L.; Tang, L. An indoor environment monitoring system using low-cost sensor network. Energy Procedia 2017, 141, 660–666. [Google Scholar] [CrossRef]
- Bagula, A.; Zennaro, M.; Inggs, G.; Scott, S.; Gascon, D. Ubiquitous Sensor Networking for Development (USN4D): An Application to Pollution Monitoring. Sensors 2012, 12, 391–414. [Google Scholar] [CrossRef] [Green Version]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef]
- Camprodon, G.; González, Ó.; Barberán, V.; Pérez, M.; Smári, V.; de Heras, M.Á.; Bizzotto, A. Smart Citizen Kit and Station: An open environmental monitoring system for citizen participation and scientific experimentation. HardwareX 2019, 6, e00070. [Google Scholar] [CrossRef]
- Pocero, L.; Amaxilatis, D.; Mylonas, G.; Chatzigiannakis, I. Open source IoT meter devices for smart and energy-efficient school buildings. HardwareX 2017, 1, 54–67. [Google Scholar] [CrossRef]
- Trilles, S.; Luján, A.; Belmonte, Ó.; Montoliu, R.; Torres-Sospedra, J.; Huerta, J. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards. Sensors 2015, 15, 5555–5582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusu, F. Wireless Programming Library and Example Code for Moteino: LowPowerLab/WirelessProgramming; LowPowerLab, LLC: Canton, MI, USA, 2019. [Google Scholar]
- ProQuest. Open Source Building Science Sensors (OSBSS): A Low-Cost Arduino-Based Platform for Long-Term Data Collection in Indoor Environments. Available online: https://search.proquest.com/openview/3f389675a54bfc 30a817aecf6970cee2/ (accessed on 14 September 2019).
- Zheng, T.; H. Bergin, M.; Johnson, K.; Tripathi, S.; Shirodkar, S.; Landis, M.; Sutaria, R.; E. Carlson, D. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmospheric Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- HOPE Microelectronics. RFM69W,RF Transceiver: FSK Modulation. Available online: http://www.hoperf.de/ rf/module/fsk/RFM69W.htm (accessed on 4 June 2019).
- OSH Park. Available online: https://oshpark.com/ (accessed on 1 August 2019).
- Rusu, F. RFM69 library for RFM69W, RFM69HW, RFM69CW, RFM69HCW (Semtech SX1231, SX1231H): LowPowerLab/RFM69; LowPowerLab, LLC: Canton, MI, USA, 2019. [Google Scholar]
- SparkFun Electronics. Pocket AVR Programmer—PGM-09825. Available online: https://www.sparkfun.com/ products/9825 (accessed on 22 July 2019).
- Tag Connect. TC2030-IDC-NL. Available online: http://www.tag-connect.com/node/36 (accessed on 22 July 2019).
- Elemental-Platform. Available online: https://github.com/elemental-platform (accessed on 16 August 2019).
- Smartbedded. Meteostick. Available online: https://www.smartbedded.com/wiki/index.php/Meteostick (accessed on 4 June 2019).
- Nerves Project. Craft and Deploy Bulletproof Embedded Software in Elixir. Available online: https://nerves-project.org/ (accessed on 4 June 2019).
- Enterprise Container Platform | Docker. Available online: https://www.docker.com/ (accessed on 4 June 2019).
- MQTT. Available online: http://mqtt.org/ (accessed on 18 September 2019).
- Chooruang, K.; Mangkalakeeree, P. Wireless Heart Rate Monitoring System Using MQTT. Procedia Comput. Sci. 2016, 86, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Barata, D.; Louzada, G.; Carreiro, A.; Damasceno, A. System of Acquisition, Transmission, Storage and Visualization of Pulse Oximeter and ECG Data Using Android and MQTT. Procedia Technol. 2013, 9, 1265–1272. [Google Scholar] [CrossRef]
- Kashyap, M.; Sharma, V.; Gupta, N. Taking MQTT and NodeMcu to IOT: Communication in Internet of Things. Procedia Comput. Sci. 2018, 132, 1611–1618. [Google Scholar] [CrossRef]
- Company, O.L.A.-T.V. VerneMQ—A MQTT Broker That Is Scalable, Enterprise Ready, and Open Source. Available online: https://vernemq.com/ (accessed on 4 June 2019).
- InfluxData. Scalable Datastore for Metrics, Events, and Real-Time Analytics: Influxdata/Influxdb; InfluxData Inc.: San Francisco, CA, USA, 2019. [Google Scholar]
- Balis, B.; Bubak, M.; Harezlak, D.; Nowakowski, P.; Pawlik, M.; Wilk, B. Towards an operational database for real-time environmental monitoring and early warning systems. Procedia Comput. Sci. 2017, 108, 2250–2259. [Google Scholar] [CrossRef]
- Sun, A.Y.; Zhong, Z.; Jeong, H.; Yang, Q. Building complex event processing capability for intelligent environmental monitoring. Environ. Model. Softw. 2019, 116, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Elm—A Delightful Language for Reliable Webapps. Available online: https://elm-lang.org (accessed on 4 June 2019).
- Grafana—The Open Platform for Analytics and Monitoring. Available online: https://grafana.com (accessed on 4 June 2019).
- Velicka, J.; Pies, M.; Hajovsky, R. Wireless Measurement of Carbon Dioxide by use of IQRF Technology. IFAC-Pap. 2018, 51, 78–83. [Google Scholar] [CrossRef]
- Min, K.T.; Lundrigan, P.; Sward, K.; Collingwood, S.C.; Patwari, N. Smart home air filtering system: A randomized controlled trial for performance evaluation. Smart Health 2018, 9–10, 62–75. [Google Scholar] [CrossRef]
- Almeida, F.; Assunção, M.D.; Barbosa, J.; Blanco, V.; Brandic, I.; Da Costa, G.; Dolz, M.F.; Elster, A.C.; Jarus, M.; Karatza, H.D.; et al. Energy monitoring as an essential building block towards sustainable ultrascale systems. Sustain. Comput. Inform. Syst. 2018, 17, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows*. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 296–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | Part Number | Unit Cost (USD) |
---|---|---|
Common parts | ||
Microprocessor | Microchip ATmega328P | $2 |
Voltage regulator | MCP1703-3.3 V | $0.50 |
Radio | RFM69HCW-915 FSK Transceiver | $4 |
Switch | MMBT3904 NPN transistor | $0.10 |
Battery | Lithium-Ion polymer (1200 mAh) | $5 |
Sensors | ||
Temperature & humidity | Sensirion SHT31 | $6 |
Light | AMS TSL2591 | $2 |
Motion | Parallax mini PIR sensor | $10 |
Door/Window opening | Soway NO Reed switch | $0.50 |
Carbon Dioxide | SenseAir S8 | $85 |
TVOC | Sensirion SGP30 | $12 |
PM2.5 and PM10 | Plantower PMS7003 | $15 |
Barometric Pressure | Bosch BMP388 | $3 |
Surface temperature | US sensors PR103J2 precision thermistor | $6 |
Other components | ||
USB interface | FTDI FT231XQ USB 2.0 full speed IC | $2 |
Flash memory | Windbond 4mbit W25 × 40CLSNIG | $0.40 |
Coil antenna | 915 MHz helical coil antenna | $0.10 |
Rubber ducky antenna | 915 MHz 3dBi SMA antenna | $2.50 |
Board Type | Unit Cost (USD) |
---|---|
Elemental wireless sensor boards | |
Temperature, relative humidity, light intensity node | $15 |
Occupancy/motion node | $20 |
Door/window node | $10 |
CO2 concentration node | $40 |
All-in-one IAQ node | $85 |
Wireless USB Gateway | $10 |
Backhaul (including supported USB gateways) | |
Raspberry Pi 3B+ | $35 |
Rainforest Automation RAVEn USB adapter | $40 |
Smartbedded Meteostick | $178 |
Name | Unit Cost (USD) | Total Kit Cost (USD) | |
---|---|---|---|
Sensor | Gateway | ||
Onset HOBO ZW Series wireless monitoring kit (3 sensors, 1 gateway) | $274 | $219 | $989 |
Monnit Wi-Fi temperature monitoring bundle (3 sensors) | $159 | - | $487 |
TempGenius complete 5 sensor system | - | - | $1,899 |
Lascar EL-WiFi-TH-Plus (3 sensors) | $200 | - | $600 |
Elemental wireless T/RH/Light 5 sensor kit | $15 | $45 | $120 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.S.; Coté, C.; Heidarinejad, M.; Stephens, B. Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control. Sensors 2019, 19, 4017. https://doi.org/10.3390/s19184017
Ali AS, Coté C, Heidarinejad M, Stephens B. Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control. Sensors. 2019; 19(18):4017. https://doi.org/10.3390/s19184017
Chicago/Turabian StyleAli, Akram Syed, Christopher Coté, Mohammad Heidarinejad, and Brent Stephens. 2019. "Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control" Sensors 19, no. 18: 4017. https://doi.org/10.3390/s19184017
APA StyleAli, A. S., Coté, C., Heidarinejad, M., & Stephens, B. (2019). Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control. Sensors, 19(18), 4017. https://doi.org/10.3390/s19184017