Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Images
2.2.2. GRACE Data
2.2.3. Altimetry Data
Laser Altimetry Data
Radar Altimetry Data
2.2.4. Model Data
2.2.5. Precipitation, Evapotranspiration, and Water-Level Data
2.3. Methods
2.3.1. Deriving the DJKR Area Change from Landsat 7
2.3.2. Estimating the Water-Level Change in the DJKR from Altimetry Data
2.3.3. Improved Lagrange Multiplier Method to Infer TWSA in the DJKR
2.3.4. Inferring Total Surface Water Storage and Human-Induced Surface Water Storage Anomaly
3. Results
3.1. The Area Change in the DJKR from Landsat
3.2. TWSA in the DJKR from the ILMM
3.2.1. Results of the Scale Factor and Leakage
3.2.2. TWSA in the DJKR from Different Methods
3.3. DJKR Water Level and Storage Changes from GRACE, Altimetry, and Hydroclimatic Data
3.4. Fingerprints of the MRSNWDP in the DJKR
4. Discussion
4.1. Verification TWSA from ILMM
4.2. Combination of In Situ, GRACE, and Altimetry Data to Manage Reservoir Water Resources
5. Conclusions
- (1)
- Changes in the water level and area in the DJKR show a good linear correlation. The relationship between the changes in area and changes in the water level is determined, and it can be used to fill in and predict missing data, verify the TWSA from GRACE data, and benefit water resource management.
- (2)
- The ILMM can improve the spatial resolution and enable the use of GRACE data to detect the TWSA in small-scale basins (such as DJKR).
- (3)
- GRACE and altimetry missions can be effectively used to monitor human-induced surface water changes, such as the impoundment of small artificial reservoirs.
- (4)
- The precipitation change and TSWSA in the HRB are basically steady and water sufficient. According to GRACE and CLM4.0 data, regardless of the precipitation changes, HSWSA obviously decreased in the upper HRB and increased in the DJKR and to the east of it, which indicates that these are the human-induced TWSA. The GRACE mission can capture the phenomenon, i.e., the water diversion fingerprints due to the DJKR impoundment.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Additive approach |
CLM | Community Land Model |
CPC | Climate Prediction Center |
DJKR | Danjiangkou Reservoir |
DVM | Dutt Vishwakarma et al. [65] Method |
GLDAS | Global Land Data Assimilation System |
GRACE | Gravity Recovery and Climate Experiment |
GRACE-TWSA | Terrestrial Water Storage Anomaly from GRACE data |
GWSA | GroundWater Storage Anomaly |
HRB | Hanjiang River Basin |
HSWSA | Human-induced Surface Water Storage Anomaly |
ILMM | Improved Lagrange Multiplier Method |
LMM | Lagrange Multiplier Method |
MA | Multiplicative Approach |
SFM | Scale factor Method |
SMA | Soil Moisture Anomaly |
SWSA | Surface Water Storage Anomaly |
TRMM | Tropical Rainfall Measuring Mission |
TSWSA | Total Surface Water Storage Anomaly |
TWSA | Terrestrial Water Storage Anomalies |
WGHM | WaterGAP Global Hydrology Model |
Appendix A. Lagrange Multiplier Method
References
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, C.; Wang, X.; Yang, Z.; Sun, C.; Liang, P. A Bayesian Method for Comprehensive Water Quality Evaluation of the Danjiangkou Reservoir Water Source Area, for the Middle Route of the South-To-North Water Diversion Project in China. Front. Earth Sci. PRC 2014, 8, 242–250. [Google Scholar] [CrossRef]
- Li, W.B.; Qin, Y.; Sun, Y.Q.; Huang, H.; Ling, F.; Tian, L.Q.; Ding, Y.L. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sens. Lett. 2016, 72, 121–130. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, A.; Cazenave, J.M.; Gregory, S.; Jevrejeva, A.; Levermann, M.A.; Merrifield, G.A.; Milne, R.S.; Nerem, P.D. Sea level change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Chao, B.F.; Wu, Y.H.; Li, Y.S. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science 2008, 320, 212–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reager, J.T.; Gardner, A.S.; Famiglietti, J.S.; Wiese, D.N.; Eicker, A.; Lo, M.-H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekete, B.M.; Vorosmarty, C.J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ. 2007, 309, 129–136. [Google Scholar]
- Looser, U.; Pietroniro, A.; Fekete, B.M.; Robarts, R.D. Rationale for Monitoring Discharge on the Ground. J. Hydrometeorol. 2012, 13, 1977–1986. [Google Scholar]
- Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.L.; Callahan, P.S. Satellite altimetry. Int. Geophys. 2001, 69. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A. Satellite Altimetry over Oceans and Land Surfaces; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cretaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological Applications of Satellite AltimetryRivers, Lakes, Man-Made Reservoirs, Inundated Areas. In Satellite Altimetry over Oceans and Land Surfaces; Informa UK Limited: London, UK, 2017; pp. 459–504. [Google Scholar]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Reager, J.T.; Thomas, B.F.; Famiglietti, J.S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 2014, 7, 588–592. [Google Scholar] [CrossRef]
- Chao, N.; Wang, Z. Characterized Flood Potential in the Yangtze River Basin from GRACE Gravity Observation, Hydrological Model, and In-Situ Hydrological Station. J. Hydrol. Eng. 2017, 22, 5017016. [Google Scholar] [CrossRef] [Green Version]
- Chao, N.; Wang, Z.; Jiang, W.; Chao, D. A quantitative approach for hydrological drought characterization in southwestern China using GRACE. Hydrogeol. J. 2016, 24, 893–903. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote. Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; Macdonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, C.; Kunstmann, H.; Devaraju, B.; Tourian, M.J.; Sneeuw, N.; Riegger, J. Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. J. Hydrometeorol. 2014, 15, 2111–2139. [Google Scholar] [CrossRef]
- Yi, S.; Song, C.; Wang, Q.; Wang, L.; Heki, K.; Sun, W. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River. Water Resour. Res. 2017, 53, 6562–6578. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Velicogna, I.; Hsu, C. Detection of sea level fingerprints derived from GRACE gravity data. Geophys. Res. Lett. 2017, 44, 8953–8961. [Google Scholar] [CrossRef]
- Farrell, W.E.; Clark, J.A. On postglacial sea level. Geophys. J. R. Astron. Soc. 1976, 46, 647–667. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Xu, Z.F.; Shen, Z.H.; Li, S.Y.; Wang, S.S. The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China. Environ. Monit. Assess. 2009, 148, 369–377. [Google Scholar] [CrossRef]
- Li, L.; Shi, Z.-H.; Yin, W.; Zhu, D.; Ng, S.L.; Cai, C.-F.; Lei, A.-L. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecol. Model. 2009, 220, 3439–3447. [Google Scholar] [CrossRef]
- Yin, D.; Zheng, L.; Song, L. Spatio-Temporal Distribution of Phytoplankton in the Danjiangkou Reservoir, a Water Source Area for the South-To-North Water Diversion Project (Middle Route), China. Chin. J. Oceanol. Limnol. 2011, 29, 531–540. [Google Scholar] [CrossRef]
- Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Höll, S.; Famiglietti, J.S.; Chen, J.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, 20504. [Google Scholar] [CrossRef]
- Dool, H.V.D.; Huang, H.J.; Fan, Y. Performance and analysis of the constructed analogue method applied to US soil moisture applied over 1981–2001. Geophys. Res. Lett. 2003, 108, 8617. [Google Scholar] [CrossRef]
- Schmied, H.M.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Doll, P. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 1583–1649. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. Space Phys. 2011, 116, G02014. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, W04531. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote. Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey (USGS) Server. Available online: http://earthexplorer.usgs.gov/ (accessed on 11 April 2019).
- GRACE Time Series. Available online: http://icgem.gfz-potsdam.de/series (accessed on 13 April 2019).
- Wahr, J.; Swenson, S.; Velicogna, I. Accuracy of GRACE mass estimates. Geophys. Res. Lett. 2006, 33, L06401. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J.; Tapley, B. Variations of the Earth’s Figure Axis from Satellite Laser Ranging and GRACE. J. Geophys. Res. 2011, 116, B01409. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Space Phys. 2008, 113, B08410. [Google Scholar] [CrossRef]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Groupe de Recherche de Géodésie Spatiale. Available online: http://www.thegraceplotter.com/ (accessed on 15 April 2019).
- Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geod. 2009, 83, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Chao, B.F.; Lu, Y.; Zhang, Z.-Z.; Hsu, H.-T.; Zhang, Z.; Hsu, H. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys. Res. Lett. 2009, 36, 17311. [Google Scholar]
- Watkins, M.M.; Landerer, F.W.; Wiese, D.N. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar]
- Bettadpur, S.; Tapley, B.D.; Save, H. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar]
- Cornelis, S. Towards a Combined Estimation of Greenland’s Ice Sheet Mass Balance Using GRACE and ICESat Data; Delft University of Technology: Delft, The Netherlands, 2007. [Google Scholar]
- Surazakov, A.B.; Aizen, V.B. Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2991–2995. [Google Scholar] [CrossRef]
- ESA. ENVISAT RA2/MWR Product Handbook; Issue 2.2; Europen Space Agency: Paris, France, 2007. [Google Scholar]
- Remy, F.; Flament, T.; Michel, A.; Blumstein, D. Envisat and SARAL/AltiKa observations of the Antarctic ice sheet: A comparison between the Ku-band and Ka-band. Mar. Geod. 2015, 38, 510–521. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P. The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Available online: http://data.cma.cn/en (accessed on 15 April 2019).
- Chang Jiang Water Resources Commission of the Ministry of Water Resources. Available online: http://www.cjw.gov.cn/ (accessed on 16 April 2019).
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote. Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Hydrology and Water Resources Survey Bureau of China. Available online: http://xxfb.hydroinfo.gov.cn/ssIndex.html (accessed on 18 April 2019).
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Du, Z.; Bin, L.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J. Appl. Remote. Sens. 2012, 6, 609–625. [Google Scholar] [CrossRef]
- Frappart, F.; Calmant, S.; Cauhope, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote. Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.C.; Kouraev, A.V.; Shum, C.K.; Vuglinsky, V.S.; Cretaux, J.F.; Calmant, S. The performance of altimeter waveform retrackers at Lake Baikal. Terr. Atmos. Ocean. Sci. 2013, 24, 513–519. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.G.; Griffiths, H. New techniques in satellite altimeter tracking systems. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Zurich, Switzerland, 8–11 September 1986; pp. 1339–1344. [Google Scholar]
- Nicolas, B.; Nicolas, L.; Hani, A.; Jean, S.B. The Relevance of GLAS/ICESat Elevation Data for the Monitoring of River Networks. Remote Sens. 2011, 3, 708–720. [Google Scholar] [Green Version]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; Freeman W H and Company: San Francisco, CA, USA; London, UK, 1967. [Google Scholar]
- Jekeli, C. Alternative Methods to Smooth the Earth’s Gravity Field; Report No. 327; Department of Geodetic Science and Surveying, Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 2010, 46, W11517. [Google Scholar] [CrossRef]
- Klees, R.; Zapreeva, E.A.; Winsemius, H.C.; Savenije, H.H.G. The bias in GRACE estimates of continental water storage variations. Hydrol. Earth Syst. Sci. 2007, 11, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour. Res. 2015, 51, 2574–2594. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, B.D.; Devaraju, B.; Sneeuw, N. Minimizing the effects of filtering on catchment scale GRACE solutions. Water Resour. Res. 2016, 52, 5868–5890. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. Space Phys. 2002, 107, 2193. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.-H.; Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Friis-Christensen, E.; Luhr, H.; Knudsen, D.; Haagmans, R. Swarm—An Earth Observation Mission investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Bezděk, A.; Sebera, J.; Encarnação, J.T.D.; Klokocnik, J. Time-variable gravity fields derived from GPS tracking of Swarm. Geophys. J. Int. 2016, 205, ggw094. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The Future of Earth Observation in Hydrology. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 1–55. [Google Scholar] [CrossRef]
Scale Methods | Smoothed Methods | |||||
---|---|---|---|---|---|---|
Gauss Smooth Radius (Units: km) | LMM | |||||
200 | 300 | 400 | 500 | |||
DVM | 3.67 | 4.40 | 6.59 | 9.56 | 2.48 | |
SFM with different hydrological models | CPC | 1.36 | 1.68 | 1.98 | 2.20 | 1.63 |
GLDAS | 1.39 | 1.70 | 1.95 | 2.11 | 1.66 | |
WGHM | 1.41 | 1.72 | 2.01 | 2.25 | 1.70 | |
CLM4.0 | 1.42 | 1.71 | 2.02 | 2.23 | 1.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, N.; Chen, G.; Luo, Z.; Su, X.; Wang, Z.; Li, F. Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data. Sensors 2019, 19, 3510. https://doi.org/10.3390/s19163510
Chao N, Chen G, Luo Z, Su X, Wang Z, Li F. Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data. Sensors. 2019; 19(16):3510. https://doi.org/10.3390/s19163510
Chicago/Turabian StyleChao, Nengfang, Gang Chen, Zhicai Luo, Xiaoli Su, Zhengtao Wang, and Fupeng Li. 2019. "Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data" Sensors 19, no. 16: 3510. https://doi.org/10.3390/s19163510
APA StyleChao, N., Chen, G., Luo, Z., Su, X., Wang, Z., & Li, F. (2019). Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data. Sensors, 19(16), 3510. https://doi.org/10.3390/s19163510