Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy
Abstract
:1. Introduction
1.1. Breath Gas Analysis
1.2. Millimeter-Wave/Terahertz Gas Spectroscopy
2. Materials and Methods
2.1. Breath Sampling
2.2. Gas Spectroscopy Setup
2.3. Sample Handling and Measurement Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Phillips, M. Breath tests in medicine. Sci. Am. 1992, 267, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W.; Andersson, L. Comparison of ethanol concentrations in venous blood and end-expired breath during a controlled drinking study. Forensic Sci. Int. 2003, 132, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Cao, W. Breath Analysis: Potential for Clinical Diagnosis and Exposure Assessment. Clin. Chem. 2006, 52, 800–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Fenske, J.D.; Paulson, S.E. Human Breath Emissions of VOCs. J. Air Waste Manag. Assoc. 1999, 49, 594–598. [Google Scholar] [CrossRef]
- Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled breath analysis: A review of “breath-taking” methods for off-line analysis. Metabolomics 2017, 13, 110. [Google Scholar] [CrossRef]
- Pereira, J.; Porto-Figueira, P.; Cavaco, C.; Taunk, K.; Rapole, S.; Dhakne, R.; Nagarajaram, H.; Câmara, J. Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview. Metabolites 2015, 5, 3–55. [Google Scholar] [CrossRef] [Green Version]
- Rydosz, A. A negative correlation between blood glucose and acetone measured in healthy and type 1 diabetes mellitus patient breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Rydosz, A. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring. Sensors 2018, 18, 2298. [Google Scholar] [CrossRef]
- Mathew, T.; Pownraj, P.; Abdulla, S.; Pullithadathil, B. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis. Diagnostics 2015, 5, 27–60. [Google Scholar] [CrossRef] [PubMed]
- Gaida, A.; Holz, O.; Nell, C.; Schuchardt, S.; Lavae-Mokhtari, B.; Kruse, L.; Boas, U.; Langejuergen, J.; Allers, M.; Zimmermann, S.; et al. A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD. J. Breath Res. 2016, 10, 026006. [Google Scholar] [CrossRef] [PubMed]
- Paardekooper, L.M.; van den Bogaart, G.; Kox, M.; Dingjan, I.; Neerincx, A.H.; Bendix, M.B.; Ter Beest, M.; Harren, F.J.M.; Risby, T.; Pickkers, P.; et al. Ethylene, an early marker of systemic inflammation in humans. Sci. Rep. 2017, 7, 6889. [Google Scholar] [CrossRef] [PubMed]
- Rubin, T.; von Haimberger, T.; Helmke, A.; Lock, J.; Stockmann, M.; Heyne, K. Liver Status Assessment by Spectrally and Time Resolved IR Detection of Drug Induced Breath Gas Changes. Photonics 2016, 3, 31. [Google Scholar] [CrossRef]
- Erhart, S.; Amann, A.; Haberlandt, E.; Edlinger, G.; Schmid, A.; Filipiak, W.; Schwarz, K.; Mochalski, P.; Rostasy, K.; Karall, D.; et al. 3-Heptanone as a potential new marker for valproic acid therapy. J. Breath Res. 2009, 3, 016004. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Kupferthaler, A.; Frauscher, B.; Hackner, H.; Unterkofler, K.; Teschl, G.; Hinterhuber, H.; Amann, A.; Högl, B. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol. Meas. 2012, 33, 413–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monks, P.S.; Willis, K.A. Breath analysis. Educ. Chem. 2010, 47, 110. [Google Scholar]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef]
- Risby, T.H.; Solga, S.F. Current status of clinical breath analysis. Appl. Phys. B 2006, 85, 421–426. [Google Scholar] [CrossRef]
- Rydosz, A.; Maziarz, W.; Pisarkiewicz, T.; de Torres, H.B.; Mueller, J. A Micropreconcentrator Design Using Low Temperature Cofired Ceramics Technology for Acetone Detection Applications. IEEE Sens. J. 2013, 13, 1889–1896. [Google Scholar] [CrossRef]
- Hrubesh, L.W.; Droege, M.W. Pure-rotational spectrometry: A vintage analytical method applied to modern breath analysis. J. Breath Res. 2013, 7, 037105. [Google Scholar] [CrossRef] [PubMed]
- Vaks, V.L.; Domracheva, E.G.; Sobakinskaya, E.A.; Chernyaeva, M.B. Exhaled breath analysis: Physical methods, instruments, and medical diagnostics. Phys. Uspekhi 2014, 57, 684. [Google Scholar] [CrossRef]
- De Lucia, F.C. The submillimeter: A spectroscopist’s view. J. Mol. Spectrosc. 2010, 261, 1–17. [Google Scholar] [CrossRef]
- Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Müller, H.S.P. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [Google Scholar] [CrossRef]
- Medvedev, I.R.; Neese, C.F.; Plummer, G.M.; De Lucia, F.C. Submillimeter spectroscopy for chemical analysis with absolute specificity. Opt. Lett. 2010, 35, 1533–1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Perkins, B.; Wang, Z.; Han, R. Molecular Detection for Unconcentrated Gas with ppm Sensitivity Using 220-to-320-GHz Dual-Frequency-Comb Spectrometer in CMOS. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Neese, C.F.; Medvedev, I.R.; Plummer, G.M.; Frank, A.J.; Ball, C.D.; De Lucia, F.C. Compact Submillimeter/Terahertz Gas Sensor with Efficient Gas Collection, Preconcentration, and ppt Sensitivity. IEEE Sens. J. 2012, 12, 2565–2574. [Google Scholar] [CrossRef]
- Schmalz, K.; Wang, R.; Debski, W.; Gulan, H.; Borngräber, J.; Neumaier, P.; Hübers, H.-W. 245 GHz SiGe sensor system for gas spectroscopy. Int. J. Microw. Wirel. Technol. 2015, 7, 271–278. [Google Scholar] [CrossRef]
- Rothbart, N.; Hübers, H.-W.; Schmalz, K.; Borngräber, J.; Kissinger, D. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy. Frequenz 2018, 72, 87–92. [Google Scholar] [CrossRef]
- Schmalz, K.; Rothbart, N.; Eissa, M.H.; Borngräber, J.; Kissinger, D.; Hübers, H.-W. Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222–270 GHz. AIP Adv. 2019, 9, 015213. [Google Scholar] [CrossRef]
- Bigourd, D.; Cuisset, A.; Hindle, F.; Matton, S.; Fertein, E.; Bocquet, R.; Mouret, G. Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy. Opt. Lett. 2006, 31, 2356–2358. [Google Scholar] [CrossRef] [PubMed]
- Bigourd, D.; Cuisset, A.; Hindle, F.; Matton, S.; Bocquet, R.; Mouret, G.; Cazier, F.; Dewaele, D.; Nouali, H. Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods. Appl. Phys. B 2007, 86, 579–586. [Google Scholar] [CrossRef]
- Hindle, F.; Bray, C.; Hickson, K.; Fontanari, D.; Mouelhi, M.; Cuisset, A.; Mouret, G.; Bocquet, R. Chirped Pulse Spectrometer Operating at 200 GHz. J. Infrared Millim. Terahertz Waves 2018, 39, 105–119. [Google Scholar] [CrossRef]
- Rothbart, N.; Schmalz, K.; Borngräber, J.; Kissinger, D.; Hübers, H.-W. Detection of volatile organic compounds in exhaled human breath by millimeter-wave/terahertz spectroscopy. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–2. [Google Scholar]
- Fosnight, A.M.; Moran, B.L.; Medvedev, I.R. Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Appl. Phys. Lett. 2013, 103, 133703. [Google Scholar] [CrossRef]
- Medvedev, I.R.; Schueler, R.; Thomas, J.; Kenneth, O.; Nam, H.-J.; Sharma, N.; Zhong, Q.; Lary, D.J.; Raskin, P. Analysis of exhaled human breath via terahertz molecular spectroscopy. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–2. [Google Scholar]
- Küppers, L.; Holz, O.; Schuchardt, S.; Gottlieb, J.; Fuge, J.; Greer, M.; Hohlfeld, J.M. Breath volatile organic compounds of lung transplant recipients with and without chronic lung allograft dysfunction. J. Breath Res. 2018, 12, 036023. [Google Scholar] [CrossRef] [PubMed]
- Schueler, R. Terahertz Spectroscopic Breath Analysis as a Viable Analytical Chemical Sensing Technique. Ph.D. Thesis, Wright University, Dayton, OH, USA, 2016. [Google Scholar]
- Reid, J.; Labrie, D. Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory. Appl. Phys. B 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Petrova Simeonova, F.; Fishbein, L. Hydrogen Cyanide and Cyanides: Human Health Aspects; Concise International Chemical Assessment Document; World Health Organization: Geneva, Switzerland, 2004; ISBN 978-92-4-153061-3. [Google Scholar]
- Stamyr, K.; Vaittinen, O.; Jaakola, J.; Guss, J.; Metsälä, M.; Johanson, G.; Halonen, L. Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy. Biomarkers 2009, 14, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryter, S.W.; Choi, A.M.K. Carbon monoxide in exhaled breath testing and therapeutics. J. Breath Res. 2013, 7, 017111. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, W.; Ruzsanyi, V.; Mochalski, P.; Filipiak, A.; Bajtarevic, A.; Ager, C.; Denz, H.; Hilbe, W.; Jamnig, H.; Hackl, M.; et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J. Breath Res. 2012, 6, 036008. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.K.; Rhoades, J.W.; Gross, A.L. Acetonitrile as a Constituent of Cigarette Smoke. Nature 1963, 198, 991–992. [Google Scholar] [CrossRef]
- Chen, S.; Zieve, L.; Mahadevan, V. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver: Effect of feeding methionine. Transl. Res. 1970, 75, 628–635. [Google Scholar]
- Novak, B.J.; Blake, D.R.; Meinardi, S.; Rowland, F.S.; Pontello, A.; Cooper, D.M.; Galassetti, P.R. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15613–15618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumaier, P.F.-X.; Schmalz, K.; Borngräber, J.; Wylde, R.; Hübers, H.-W. Terahertz gas-phase spectroscopy: chemometrics for security and medical applications. Analyst 2015, 140, 213–222. [Google Scholar] [CrossRef] [PubMed]
Compound | Molecular Formula | CAS Number | M (g/mol) | Line Positions (GHz) | |
---|---|---|---|---|---|
Water | H2O | 7732-18-5 | 18.02 | 325.153 | 321.226 |
Hydrogen cyanide | HCN | 74-90-8 | 27.03 | 265.886 | - |
Carbon monoxide | CO | 630-08-0 | 28.01 | 230.538 | - |
Nitrogen oxide | NO | 10102-43-9 | 30.01 | 250.437 | 257.822 |
Formaldehyde | CH2O | 50-00-0 | 30.03 | 225.698 | 281.527 |
Methanol | CH3OH | 67-56-1 | 32.04 | 309.29 | 241.7 |
Hydrogen sulfide | H2S | 7783-06-4 | 34.08 | 300.506 | 314.438 * |
Acetonitrile | CH3CN | 75-05-8 | 41.05 | 312.634 | 239.119 |
Methyl isocyanide | CH3NC | 593-75-9 | 41.05 | 301.495 | 301.461 * |
Acetaldehyde | CH3CHO | 75-07-0 | 44.05 | 299.175 | 312.784 |
Ethanol | CH3CH2OH | 64-17-5 | 46.07 | 242.35 | 316.502 |
Vinyl isocyanide | CH2CHNC | 14668-82-7 | 53.06 | 230.875 | 316.175* |
Acrolein | CH2CHCHO | 107-02-08 | 56.06 | 309.454 | 319.636 |
Acetone | CH3COCH3 | 67-64-1 | 58.08 | 249.805 | 316.224 |
Carbonyl sulfide | OCS | 463-58-1 | 60.08 | 303.993 | 291.84 |
Dimethyl sulfide | CH3SCH3 | 75-18-3 | 62.13 | 222.003 | 256.269 * |
Isoprene | CH2CCH3CHCH2 | 78-79-5 | 68.12 | 236.101 | 247.714 * |
Butyraldehyde | CH3CH2CH2CHO | 123-72-8 | 72.11 | 247.481 | 245.465 * |
Methyl nitrate | CH3NO3 | 598-58-3 | 77.04 | 236.624 | 243.849 * |
Pyruvic acid | C3H4O3 | 127-17-3 | 88.06 | 239.23 | 235.767 * |
Butyric acid | CH3CH2CH2COOH | 107-92-6 | 88.11 | 247.756 | 246.573 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothbart, N.; Holz, O.; Koczulla, R.; Schmalz, K.; Hübers, H.-W. Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. Sensors 2019, 19, 2719. https://doi.org/10.3390/s19122719
Rothbart N, Holz O, Koczulla R, Schmalz K, Hübers H-W. Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. Sensors. 2019; 19(12):2719. https://doi.org/10.3390/s19122719
Chicago/Turabian StyleRothbart, Nick, Olaf Holz, Rembert Koczulla, Klaus Schmalz, and Heinz-Wilhelm Hübers. 2019. "Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy" Sensors 19, no. 12: 2719. https://doi.org/10.3390/s19122719