New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Data availability
References
- Reenalda, J.; Maartens, E.; Homan, L.; Buurke, J.J. Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics. J. Biomech. 2016, 49, 3362–3367. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS One 2018, 13, e0203839. [Google Scholar] [CrossRef]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Osis, S.T.; Ferber, R. Subject-specific and group-based running pattern classification using a single wearable sensor. J. Biomech. 2019, 84, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait & Posture 2018, 63, 124–138. [Google Scholar]
- Benson, L.C.; Ahamed, N.U.; Kobsar, D.; Ferber, R. New considerations for collecting biomechanical data using wearable sensors: Number of level runs to define a stable running pattern with a single IMU. J. Biomech. 2019, 85, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Farias, N.; Martino-Fuentealba, P.; Salom-Diaz, N.; Brown, W.J. How many days are enough for measuring weekly activity behaviours with the activpal in adults? J. Sci. Med. Sport 2018, 22, 6. [Google Scholar] [CrossRef]
- Cola, G.; Avvenuti, M.; Vecchio, A.; Yang, G.-Z.; Lo, B. An on-node processing approach for anomaly detection in gait. IEEE Sens. J. 2015, 15, 6640–6649. [Google Scholar] [CrossRef]
- Giandolini, M.; Horvais, N.; Rossi, J.; Millet, G.Y.; Samozino, P.; Morin, J.-B. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J. Biomech. 2016, 49, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Giandolini, M.; Pavailler, S.; Samozino, P.; Morin, J.-B.; Horvais, N. Foot strike pattern and impact continuous measurements during a trail running race: Proof of concept in a world-class athlete. Footwear Sci. 2015, 7, 127–137. [Google Scholar] [CrossRef]
- Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.-B.; Samozino, P.; Horvais, N.; Millet, G.Y. Biomechanics and physiology of uphill and downhill running. Sports Med. 2017, 47, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, E.; Li, J.X. Lower limb joint angles and ground reaction forces in forefoot strike and rearfoot strike runners during overground downhill and uphill running. Sports Biomech. 2016, 15, 497–512. [Google Scholar] [CrossRef]
- Diedrich, F.J.; Warren, W.H., Jr. Why change gaits? Dynamics of the walk-run transition. J. Exp. Psychology: Human Percept. Perform. 1995, 21, 183. [Google Scholar] [CrossRef]
- MathWorks. Multivariate normal distribution. Available online: https://www.mathworks.com/help/stats/multivariate-normal-distribution.html 2018 (accessed on 30 May 2019).
- Wiklander, J. Design proposal of a fall and step pattern recognition system. Available online: https://www.researchgate.net/publication/265491581_Design_Proposal_of_a_Fall_and_Step_Pattern_Recognition_System (accessed on 30 May 2019).
- Sasyniuk, T.M.; Mohtadi, N.G.; Hollinshead, R.M.; Russell, M.L.; Fick, G.H. The inter-rater reliability of shoulder arthroscopy. Arthroscopy J Arthroscopic Relat. Surg. 2007, 23, 971–977. [Google Scholar] [CrossRef]
- Ferber, R.; Kendall, K.D.; McElroy, L. Normative and critical criteria for iliotibial band and iliopsoas muscle flexibility. J. Athletic Train. 2010, 45, 344–348. [Google Scholar] [CrossRef]
- Dierks, T.A.; Davis, I.S.; Hamill, J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J. Biomech. 2010, 43, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; O’Connor, K.M. The effect of exertion on joint kinematics and kinetics during running using a waveform analysis approach. J. Appl. Biomech. 2015, 31, 250–257. [Google Scholar] [CrossRef]
- Degache, F.; Morin, J.-B.; Oehen, L.; Guex, K.; Giardini, G.; Schena, F.; Millet, G.Y.; Millet, G.P. Running mechanics during the world’s most challenging mountain ultramarathon. Int. J. Sports Physiol. Perform. 2016, 11, 608–614. [Google Scholar] [CrossRef]
- Millet, G.; Banfi, J.; Kerherve, H.; Morin, J.; Vincent, L.; Estrade, C.; Geyssant, A.; Feasson, L. Physiological and biological factors associated with a 24 h treadmill ultra-marathon performance. Scand. J. Med. Sci. Sports 2011, 21, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, N.U.; Benson, L.; Clermont, C.; Osis, S.T.; Ferber, R. Fuzzy inference system-based recognition of slow, medium and fast running conditions using a triaxial accelerometer. Procedia Comput. Sci. 2017, 114, 401–407. [Google Scholar] [CrossRef]
- Duñabeitia, I.; Arrieta, H.; Torres-Unda, J.; Gil, J.; Santos-Concejero, J.; Gil, S.M.; Irazusta, J.; Bidaurrazaga-Letona, I. Effects of a capacitive-resistive electric transfer therapy on physiological and biomechanical parameters in recreational runners: A randomized controlled crossover trial. Phys. Therapy Sport 2018, 32, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Di Michele, R.; Merni, F. The concurrent effects of strike pattern and ground-contact time on running economy. J. Med. Sci. Sports 2014, 17, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ferber, R.; Davis, I.M.; Williams Iii, D.S. Gender differences in lower extremity mechanics during running. Clin. Biomech. 2003, 18, 350–357. [Google Scholar] [CrossRef]
- Phinyomark, A.; Hettinga, B.A.; Osis, S.T.; Ferber, R. Gender and age-related differences in bilateral lower extremity mechanics during treadmill running. PLoS One 2014, 9, e105246. [Google Scholar] [CrossRef] [PubMed]
- Taunton, J.E.; Ryan, M.B.; Clement, D.; McKenzie, D.C.; Lloyd-Smith, D.; Zumbo, B. A retrospective case-control analysis of 2002 running injuries. Br. J. Sports Med. 2002, 36, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Clermont, C.A.; Benson, L.C.; Osis, S.T.; Kobsar, D.; Ferber, R. Running patterns for male and female competitive and recreational runners based on accelerometer data. J. Sports Sci. 2019, 37, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Willy, R.; Buchenic, L.; Rogacki, K.; Ackerman, J.; Schmidt, A.; Willson, J. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture. Scand. J. Med. Sci. Sports 2016, 26, 197–205. [Google Scholar] [CrossRef]
- Edwards, W.B. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exercise Sport Sci. Rev. 2018, 46, 224–231. [Google Scholar] [CrossRef] [PubMed]
Elevation Condition | Total Distance (km) | Average Inclination (%) | Speed (m/s) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Level | 4.2 | 2.1 | 1.88 | 1.44 | 2.41 | 0.26 |
Uphill | 3.3 | 1.1 | 3.24 | 1.61 | 2.43 | 0.25 |
Downhill | 3.5 | 1.3 | −3.81 | 2.52 | 2.44 | 0.22 |
Mixed | 8.3 | 3.2 | 0.17 | 2.51 | 2.45 | 0.25 |
Number of Runs Per Set | Number of Unique Sets | Sets | Number of Training-Testing Dataset Pairs |
---|---|---|---|
1 | 7 | {Run 1}, {Run 2}, … | 49 |
2 | 21 | {Runs 1 + 2}, {Runs 1 + 3}, … | 126 |
3 | 35 | {Runs 1 + 2 + 3}, {Runs 1 + 2 + 4}, … | 175 |
4 | 35 | {Runs 1 + 2 + 3 + 4}, {Runs 1 + 2 + 3 + 5}, … | 140 |
5 | 21 | {Runs 1 + 2 + 3 + 4 + 5}, {Runs 1 + 2 + 3 + 4 + 6}, … | 63 |
6 | 7 | {Runs 1 + 2 + 3 + 4 + 5 + 6}, {Runs 1 + 2 + 3 + 4 + 5 + 7}, | 14 |
7 | 1 | {Runs 1 + 2 + 3 + 4 + 5 + 6 + 7} | 0 |
Units | Variable/Condition | Cadence | Bounce | Braking | Pelvic Drop | Pelvic Rotation | Ground Contact Time | Multivariate |
---|---|---|---|---|---|---|---|---|
Mean (SD) | Level | 1.71 (0.67) | 2.09 (0.61) | 2.46 (0.61) | 2.60 (0.81) | 2.26 (0.71) | 2.34 (0.76) | 3.29 (0.79) |
Uphill | 1.74 (0.56) | 2.10 (0.66) | 2.61 (0.85) | 2.49 (0.82) | 2.11 (0.68) | 2.17 (0.75) | 3.14 (0.65) | |
Downhill | 1.37 (0.49) | 2.11 (0.63) | 2.46 (0.78) | 2.40 (0.74) | 1.97 (0.66) | 2.29 (0.57) | 3.20 (0.53) | |
Mixed | 1.69 (0.63) | 2.17 (0.82) | 2.26 (0.56) | 2.63 (0.73) | 2.27 (0.71) | 2.23 (0.59) | 3.21 (0.72) | |
Max | Level | 3 | 3 | 3 | 4 | 4 | 4 | 5 |
Uphill | 3 | 3 | 4 | 4 | 3 | 3 | 4 | |
Downhill | 2 | 3 | 4 | 4 | 3 | 3 | 4 | |
Mixed | 3 | 4 | 3 | 4 | 4 | 3 | 5 |
Variables | Test | Level | Uphill | Downhill | Mixed | |
---|---|---|---|---|---|---|
Train | ||||||
Cadence | Level | 0.98 | 0.75 | 0.76 | 0.88 | |
Uphill | 0.77 | 1.0 | 0.67 | 0.86 | ||
Downhill | 0.67 | 0.66 | 1.0 | 0.82 | ||
Mixed | 0.82 | 0.85 | 0.85 | 0.99 | ||
Vertical Oscillation | Level | 0.99 | 0.76 | 0.69 | 0.92 | |
Uphill | 0.74 | 0.99 | 0.71 | 0.91 | ||
Downhill | 0.63 | 0.73 | 1.0 | 0.85 | ||
Mixed | 0.81 | 0.82 | 0.68 | 1.0 | ||
Braking | Level | 1.0 | 0.66 | 0.73 | 0.84 | |
Uphill | 0.78 | 1.0 | 0.76 | 0.86 | ||
Downhill | 0.71 | 0.74 | 0.99 | 0.84 | ||
Mixed | 0.85 | 0.84 | 0.81 | 1.0 | ||
Pelvic Drop | Level | 0.99 | 0.68 | 0.72 | 0.81 | |
Uphill | 0.75 | 0.98 | 0.68 | 0.83 | ||
Downhill | 0.76 | 0.75 | 1.0 | 0.84 | ||
Mixed | 0.83 | 0.81 | 0.65 | 1.0 | ||
Pelvic Rotation | Level | 1.0 | 0.76 | 0.69 | 0.84 | |
Uphill | 0.72 | 0.99 | 0.67 | 0.87 | ||
Downhill | 0.73 | 0.72 | 0.99 | 0.86 | ||
Mixed | 0.81 | 0.85 | 0.86 | 1.0 | ||
Ground Contact Time | Level | 0.99 | 0.72 | 0.66 | 0.70 | |
Uphill | 0.74 | 1.0 | 0.68 | 0.89 | ||
Downhill | 0.71 | 0.71 | 1.0 | 0.82 | ||
Mixed | 0.84 | 0.83 | 0.88 | 1.0 | ||
Multivariate | Level | 0.98 | 0.63 | 0.74 | 0.73 | |
Uphill | 0.62 | 1.0 | 0.76 | 0.66 | ||
Downhill | 0.70 | 0.73 | 0.99 | 0.68 | ||
Mixed | 0.67 | 0.71 | 0.69 | 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahamed, N.U.; Benson, L.C.; Clermont, C.A.; Pohl, A.J.; Ferber, R. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern? Sensors 2019, 19, 2516. https://doi.org/10.3390/s19112516
Ahamed NU, Benson LC, Clermont CA, Pohl AJ, Ferber R. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern? Sensors. 2019; 19(11):2516. https://doi.org/10.3390/s19112516
Chicago/Turabian StyleAhamed, Nizam U., Lauren C. Benson, Christian A. Clermont, Andrew J. Pohl, and Reed Ferber. 2019. "New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern?" Sensors 19, no. 11: 2516. https://doi.org/10.3390/s19112516
APA StyleAhamed, N. U., Benson, L. C., Clermont, C. A., Pohl, A. J., & Ferber, R. (2019). New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern? Sensors, 19(11), 2516. https://doi.org/10.3390/s19112516