Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking
Abstract
1. Introduction
2. Materials and Methods
2.1. FES System
2.2. Experimental Protocol
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, B.J.; Baxendale, R.H.; Barnett, R.; Phillips, G.F.; Yamazaki, T.; Paul, J.P.; Freeman, P.A. Hybrid FES orthosis incorporating closed loop control and sensory feedback. J. Biomed. Eng. 1988, 10, 189–195. [Google Scholar] [CrossRef]
- Bajd, T.; Kralj, A.; Sega, J.; Turk, R.; Benko, H.; Strojnik, P. Use of a two-channel functional electrical stimulator to stand paraplegic patients. Phys. Ther. 1981, 61, 526–527. [Google Scholar] [CrossRef]
- Brindley, G.S.; Polkey, C.E.; Rushton, D.N. Electrical splinting of the knee in paraplegia. Paraplegia 1979, 16, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Kralj, A.; Bajd, T.; Turk, R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin. Orthop. Relat. Res. 1988, 34–43. [Google Scholar] [CrossRef]
- Marsolais, E.B.; Kobetic, R. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin. Orthop. Relat. Res. 1988, 64–74. [Google Scholar] [CrossRef]
- Stein, J.; Baker, E.; Pine, Z.M. Medial paraspinal muscle electromyography: Techniques of examination. Arch. Phys. Med. Rehabil. 1993, 74, 497–500. [Google Scholar] [CrossRef]
- Chae, J.; Hart, R. Intramuscular hand neuroprosthesis for chronic stroke survivors. Neurorehabil. Neural Repair 2003, 17, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Mangold, S.; Keller, T.; Curt, A.; Dietz, V. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord 2005, 43, 1–13. [Google Scholar] [CrossRef][Green Version]
- Venkatasubramanian, G.; Jung, R.; Sweeney, J. Functional Electrical Stimulation. Wiley Encycl. Med. Devices Instrum. 2006, 347–366. [Google Scholar]
- Kutlu, M.; Freeman, C.; Hughes, A.M.; Spraggs, M. A Home-based FES System for Upper-limb Stroke Rehabilitation with Iterative Learning Control. IFAC PapersOnLine 2017, 50, 12089–12094. [Google Scholar] [CrossRef]
- Freeman, C.T. Upper Limb Electrical Stimulation Using Input-Output Linearization and Iterative Learning Control. IEEE Trans. Control Syst. Technol. 2015, 23, 1546–1554. [Google Scholar] [CrossRef]
- Valtin, M.; Seel, T.; Raisch, J.; Schauer, T. Iterative learning control of drop foot stimulation with array electrodes for selective muscle activation. In Proceedings of the IFAC, Cape Town, South Africa, 24–29 August 2014; Vol. 19, pp. 6587–6592. [Google Scholar]
- Seel, T.; Laidig, D.; Valtin, M.; Werner, C.; Raisch, J.; Schauer, T. Feedback control of foot eversion in the adaptive peroneal stimulator. In Proceedings of the 2014 22nd Mediterranean Conference on Control and Automation, MED 2014, Palermo, Italy, 16–19 June 2014; pp. 1482–1487. [Google Scholar]
- Jezernik, S.; Wassink, R.G.V.; Keller, T. Sliding mode closed-loop control of FES: Controlling the shank movement. IEEE Trans. Biomed. Eng. 2004, 51, 263–272. [Google Scholar] [CrossRef]
- Lynch, C.L.; Popovic, M.R. Functional Electrical Stimulation. IEEE Control Syst. Mag. 2008, 28, 40–50. [Google Scholar]
- Postans, N.J.; Granat, M.H. Effect of functional electrical stimulation, applied during walking, on gait in spastic cerebral palsy. Dev. Med. Child Neurol. 2005, 47, 46–52. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, M.L.; Hazlewood, M.E.; Hillman, S.J.; Robb, J.E. Functional Electrical Stimulation to the Dorsiflexors and Quadriceps in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2008, 20, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Martikaro, R.; Wientroub, S.; Hemo, Y.; Hayek, S. A functional electrical stimulation system improves knee control in crouch gait. J. Child. Orthop. 2015, 9, 137–143. [Google Scholar] [CrossRef]
- Comeaux, P.; Patterson, N.; Rubin, M.; Meiner, R. Effect of neuromuscular electrical stimulation during gait in children with cerebral palsy. Pediatr. Phys. Ther. 1997, 9, 103–109. [Google Scholar] [CrossRef]
- Johnston, T.E.; Finson, R.L.; McCarthy, J.J.; Smith, B.T.; Betz, R.R.; Mulcahey, M.J. Use of functional electrical stimulation to augment traditional orthopaedic surgery in children with cerebral palsy. J. Pediatr. Orthop. 2004, 24, 283–291. [Google Scholar] [CrossRef]
- Carmick, J. Clinical use of neuromuscular electrical stimulation for children with cerebral palsy, Part 1: Lower extremity. Phys. Ther. 1993, 73, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.; Eve, L.; Stevens, C.; Ewins, D. Effect of Functional Electrical Stimulation on asymmetries in gait of children with hemiplegic cerebral palsy. Physiotherapy 2004, 90, 82–90. [Google Scholar] [CrossRef]
- Rueterbories, J.; Spaich, E.G.; Larsen, B.; Andersen, O.K. Methods for gait event detection and analysis in ambulatory systems. Med. Eng. Phys. 2010, 32, 545–552. [Google Scholar] [CrossRef]
- Pappas, I.P.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Perry, J. Gait Analysis: Normal and Pathological Function, 1st ed.; Slack Incorporated: Thorofare, NJ, USA, 1992; Vol. 12, ISBN 9781556421921. [Google Scholar]
- Monaghan, C.C.; van Riel, W.J.; Veltink, P.H. Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait. Med. Biol. Eng. Comput. 2009, 47, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Whittle, M.W. Gait Analysis: An Introduction, 4th ed.; Elsevier Ltd: Philadelphia, PA, USA, 2007; ISBN 9780750688833. [Google Scholar]
- Kesar, T.M.; Perumal, R.; Jancosko, A.; Reisman, D.S.; Rudolph, K.S.; Higginson, J.S.; Binder-Macleod, S.A. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys. Ther. 2010, 90, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Kesar, T.M.; Perumal, R.; Reisman, D.S.; Jancosko, A.; Rudolph, K.S.; Higginson, J.S.; Binder-Macleod, S.A. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: Effects on poststroke gait. Stroke 2009, 40, 3821–3827. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Liu, H.; Yan, T.; Jin, D.; He, X.; Zheng, X.; Xu, S.; Tan, C. The effectiveness of functional electrical stimulation based on a normal gait pattern on subjects with early stroke: A randomized controlled trial. Biomed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Gregory, C.M.; Dixon, W.E. Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 601–611. [Google Scholar] [CrossRef]
- Masani, K.; Vette, A.H.; Kawashima, N.; Popovic, M.R. Neuromusculoskeletal Torque-Generation Process Has a Large Destabilizing Effect on the Control Mechanism of Quiet Standing. J. Neurophysiol. 2008, 100, 1465–2008. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Downey, R.J.; Obuz, S.; Dixon, W.E. Isometric Torque Control for Neuromuscular Electrical Stimulation with Time-Varying Input Delay. IEEE Trans. Control Syst. Technol. 2016, 24, 971–978. [Google Scholar] [CrossRef]
- Karafyllis, I.; Malisoff, M.; De Queiroz, M.; Krstic, M.; Yang, R. A new tracking controller for neuromuscular electrical stimulation under input delays: Case study in prediction. In Proceedings of the American Control Conference, Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Masani, K.; Vette, A.H.; Popovic, M.R. Controlling balance during quiet standing: Proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 2006, 23, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Alibeji, N.; Kirsch, N.; Sharma, N. Control of functional electrical stimulation in the presence of electromechanical and communication delays. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, NER, San Diego, CA, USA, 6–8 November 2013; pp. 299–302. [Google Scholar]
- Gouwanda, D.; Gopalai, A.A. A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits. Med. Eng. Phys. 2015, 37, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, Z.; Ni, W.; Vasic, Z.L.; Cifrek, M.; Du, M.; Vai, M.I.; Pun, S.H. A Novel Gait Detection Algorithm Based on Wireless Inertial Sensors. In Proceedings of the International Conference on Medical and Biological Engineering, Sarajevo, Bosnia and Herzegovina, 16–18 March 2017; pp. 300–304. [Google Scholar]
- Maqbool, F.; Awad, M.I.; Abouhossein, A.; Iqbal, N. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1500–1509. [Google Scholar] [CrossRef]
- Senanayake, C.; Senanayake, S. A computational method for reliable gait event detection and abnormality detection for feedback in rehabilitation. Comput. Methods 2011, 14, 37–41. [Google Scholar] [CrossRef]
- Müller, P.; Seel, T.; Schauer, T. Experimental Evaluation of a Novel Inertial Sensor Based Realtime Gait Phase Detection Algorithm. In Proceedings of the 5th European Conference on Technically Assisted Rehabilitation, Berlin, Germany, 12–13 March 2015. [Google Scholar]
- Pappas, I.P.I.; Keller, T.; Mangold, S.; Popovic, M.R.; Dietz, V.; Morari, M. A Reliable Gyroscope-Based Gait-Phase Detection Sensor Embedded in a Shoe Insole. IEEE Sens. J. 2004, 4, 268–274. [Google Scholar] [CrossRef]
- Behboodi, A.; Zahradka, N.; Wright, H.; Alesi, J.; Lee, S.C.K. Real-Time Detection of Seven Phases of Gait in Children with Cerebral Palsy Using Two Gyroscopes. Sensors 2019, in press. [Google Scholar]
- Behboodi, A.; Wright, H.; Zahradka, N.; Lee, S.C.K. Seven phases of gait detected in real-time using shank attached gyroscopes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015; pp. 5529–5532. [Google Scholar]
- Rehabilitation Measures Database Timed 10-Meter Walk Test. Available online: http://www.rehabmeasures.org/PDF Library/10 Meter Walk Test Instructions.pdf (accessed on 28 May 2019).
- Zeni, J.A.; Higginson, J.S. Gait parameters and stride-to-stride variability during familiarization to walking on a split-belt treadmill. Clin. Biomech. 2010, 25, 383–386. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Observational Gait Analysis by Los Amigos Research & Education Center; Los Amigos Research and Education Center: Downey, CA, USA, 1989; ISBN 0-9676335-1-6.
- Pierce, S.R.; Orlin, M.N.; Lauer, R.T.; Johnston, T.E.; Smith, B.T.; McCarthy, J.J. Comparison of percutaneous and surface functional electrical stimulation during gait in a child with hemiplegic cerebral palsy. Am. J. Phys. Med. Rehabil. 2004, 83, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Postans, N.; Schwartz, M. An exploration of the function of the triceps surae during normal gait using functional electrical stimulation. Gait Posture 2007, 26, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-L.; Holt, K.G.; Saltzman, E.; Wagenaar, R.C. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. Phys. Ther. 2006, 86, 987–1000. [Google Scholar]
- Damiano, D.L.; Prosser, L.A.; Curatalo, L.A.; Alter, K.E. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil. Neural Repair 2013, 27, 200–207. [Google Scholar] [CrossRef]
- Wieler, M.; Stein, R.; Ladouceur, M. Multicenter evaluation of electrical stimulation systems for walking. Arch. Phys. Med. Rehabil. 1999, 80, 495–500. [Google Scholar] [CrossRef]
- APDM SDK Developer Guide. Available online: https://www.yumpu.com/en/document/view/49382097/apdm-sdk-developer-guide (accessed on 28 May 2019).
- Korver, N. Adequacy of the Universal Serial Bus for Real-Time Systems; University of Twente: Enschede, The Netherlands, 2003. [Google Scholar]
- Zahradka, N. When and What to Stimulate?: An Evaluation of a Custom Functional Electrical Stimulation System and Its Neuroprosthetic Effect on Gait in Children with Cerebral Palsy. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2017. [Google Scholar]
Stance Period | Swing Period | ||||||
---|---|---|---|---|---|---|---|
Gait Phase | LR | MSt | TSt | PSw | ISw | MSw | TSw |
Plantarflexors | |||||||
Dorsiflexors | |||||||
Quadriceps | |||||||
Hamstrings | |||||||
Gluteals |
Gait Phase | Average (±SD) Duration (ms) | Average (±SD) Duration (% GC) | Rancho Los Amigos Duration (% GC) [52] |
---|---|---|---|
LR | 133.8 ± 21.8 | 12.2 ± 2.0 | 12 |
MSt | 266.8 ± 21.4 | 24.3 ± 2.8 | 19 |
TSt | 144.3 ± 18.4 | 13.2 ± 1.5 | 19 |
PSw | 133.9 ± 21.6 | 12.0 ± 2.0 | 12 |
ISw | 120.0 ± 17.9 | 11.0 ± 1.9 | 13 |
MSw | 139.2 ± 13.4 | 12.7 ± 1.4 | 12 |
TSw | 150.0 ± 18.4 | 13.9 ± 1.4 | 13 |
Muscle Group | Start Time (% GC) | Stop Time (% GC) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Desired | T1 | T2 | T3 | T4 | T5 | Desired | T1 | T2 | T3 | T4 | T5 | ||
G | Avg | 86 | 76 | 82 | 86 | 91 | 97 | 37 | 16 | 23 | 30 | 37 | 44 |
SD | 1 | 3 | 4 | 4 | 4 | 4 | 2 | 4 | 5 | 4 | 5 | 4 | |
Max | 91 | 85 | 92 | 97 | 100 | 9* | 43 | 25 | 39 | 40 | 53 | 56 | |
Min | 81 | 67 | 71 | 75 | 81 | 86 | 33 | 4 | 13 | 18 | 25 | 31 | |
H | Avg | 73 | 68 | 71 | 72 | 74 | 76 | 12 | 3 | 7 | 10 | 14 | 17 |
SD | 2 | 4 | 5 | 5 | 4 | 5 | 2 | 3 | 4 | 4 | 7 | 4 | |
Max | 77 | 81 | 86 | 91 | 90 | 90 | 17 | 13 | 17 | 26 | 53 | 29 | |
Min | 68 | 56 | 59 | 59 | 63 | 63 | 9 | 96 ** | 0 | 2 | 5 | 9 | |
Q | Avg | 86 | 76 | 82 | 87 | 92 | 97 | 37 | 16 | 24 | 30 | 38 | 44 |
SD | 1 | 4 | 4 | 4 | 3 | 4 | 2 | 4 | 5 | 4 | 6 | 5 | |
Max | 91 | 85 | 92 | 97 | 100 | 9 * | 43 | 25 | 40 | 41 | 66 | 66 | |
Min | 81 | 57 | 72 | 76 | 82 | 86 | 33 | 1 | 13 | 19 | 26 | 32 | |
Q2 | Avg | 50 | 47 | 50 | 51 | 53 | 55 | 62 | 53 | 57 | 60 | 64 | 67 |
SD | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 3 | 4 | 4 | 4 | 5 | |
Max | 55 | 58 | 63 | 64 | 64 | 69 | 68 | 64 | 70 | 73 | 74 | 79 | |
Min | 44 | 38 | 41 | 41 | 43 | 44 | 56 | 47 | 49 | 51 | 57 | 57 | |
DF | Avg | 50 | 47 | 50 | 51 | 54 | 56 | 12 | 3 | 7 | 10 | 14 | 17 |
SD | 2 | 4 | 4 | 4 | 4 | 5 | 2 | 3 | 4 | 4 | 4 | 4 | |
Max | 55 | 58 | 64 | 64 | 76 | 74 | 17 | 16 | 17 | 27 | 24 | 29 | |
Min | 44 | 38 | 41 | 41 | 43 | 44 | 9 | 96 ** | 0 | 2 | 6 | 9 | |
PF | Avg | 12 | 5 | 9 | 12 | 17 | 19 | 62 | 52 | 57 | 59 | 63 | 67 |
SD | 2 | 3 | 4 | 4 | 7 | 4 | 2 | 3 | 4 | 4 | 4 | 5 | |
Max | 17 | 13 | 18 | 28 | 55 | 31 | 68 | 64 | 69 | 73 | 73 | 100 | |
Min | 9 | 0 | 2 | 5 | 7 | 10 | 56 | 47 | 49 | 51 | 57 | 57 |
Trigger Condition | ||||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | ||
Recall | Mean | 0.635 | 0.753 | 0.820 | 0.846 | 0.795 |
SD Error | 0.008 | 0.007 | 0.006 | 0.005 | 0.006 | |
Precision | Mean | 0.767 | 0.888 | 0.928 | 0.916 | 0.830 |
SD Error | 0.008 | 0.005 | 0.004 | 0.005 | 0.006 | |
F1 | Mean | 0.716 | 0.808 | 0.866 | 0.878 | 0.819 |
SD Error | 0.006 | 0.006 | 0.005 | 0.005 | 0.005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahradka, N.; Behboodi, A.; Wright, H.; Bodt, B.; Lee, S. Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking. Sensors 2019, 19, 2471. https://doi.org/10.3390/s19112471
Zahradka N, Behboodi A, Wright H, Bodt B, Lee S. Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking. Sensors. 2019; 19(11):2471. https://doi.org/10.3390/s19112471
Chicago/Turabian StyleZahradka, Nicole, Ahad Behboodi, Henry Wright, Barry Bodt, and Samuel Lee. 2019. "Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking" Sensors 19, no. 11: 2471. https://doi.org/10.3390/s19112471
APA StyleZahradka, N., Behboodi, A., Wright, H., Bodt, B., & Lee, S. (2019). Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking. Sensors, 19(11), 2471. https://doi.org/10.3390/s19112471