Influence of Stainless Needle Electrodes and Silver Disk Electrodes over the Interhemispheric Cerebral Coherence Value in Vigil Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. EEG System and Electrodes
2.3. Experiment Protocol
2.4. EEG Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sutter, R.; Kaplan, P.W.; Cervenka, M.C.; Thakur, K.T.; Asemota, A.O.; Venkatesan, A.; Geocadin, R.G. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2015, 126, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Naim-Feil, J.; Rubinson, M.; Freche, D.; Grinshpoon, A.; Peled, A.; Moses, E.; Levit-Binnun, N. Altered brain network dynamics in schizophrenia: A cognitive electroencephalography study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, M.; Murphy, N.; Peraza, L.R.; Graziadio, S.; Cromarty, R.; Killen, A.; O’Brien, J.T.; Thomas, A.J.; LeBeau, F.E.N.; Taylor, J.P. Quantitative electroencephalography as a marker of cognitive fluctuations in dementia with lewy bodies and an aid to differential diagnosis. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2018, 129, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, C.; Cavanaugh, J.M.; Kallakuri, S.; Desai, A.; Zhang, L.; King, A.I. Quantitative electroencephalography in a swine model of blast-induced brain injury. Brain Inj. 2017, 31, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Debicki, D.B. Electroencephalography after a single unprovoked seizure. Seizure 2017, 49, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Berendt, M.; Hogenhaven, H.; Flagstad, A.; Dam, M. Electroencephalography in dogs with epilepsy: Similarities between human and canine findings. Acta Neurol. Scand. 1999, 99, 276–283. [Google Scholar] [CrossRef] [PubMed]
- De Risio, L.; Bhatti, S.; Munana, K.; Penderis, J.; Stein, V.; Tipold, A.; Berendt, M.; Farqhuar, R.; Fischer, A.; Long, S.; et al. International veterinary epilepsy task force consensus proposal: Diagnostic approach to epilepsy in dogs. BMC Vet. Res. 2015, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrzosek, M.; Ives, J.R.; Karczewski, M.; Dziadkowiak, E.; Gruszka, E. The relationship between epileptiform discharges and background activity in the visual analysis of electroencephalographic examinations in dogs with seizures of different etiologies. Vet. J. 2017, 222, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Youh, J.; Hong, J.S.; Han, D.H.; Chung, U.S.; Min, K.J.; Lee, Y.S.; Kim, S.M. Comparison of electroencephalography (eeg) coherence between major depressive disorder (mdd) without comorbidity and mdd comorbid with internet gaming disorder. J. Korean Med. Sci. 2017, 32, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Lin, C.T.; Chuang, C.H.; Lai, K.L.; Yang, A.C.; Fuh, J.L.; Wang, S.J. Resting-state eeg power and coherence vary between migraine phases. J. Headache Pain 2016, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Rubega, M.; Sparacino, G.; Sejling, A.S.; Juhl, C.B.; Cobelli, C. Hypoglycemia-induced decrease of eeg coherence in patients with type 1 diabetes. Diabetes Technol. Ther. 2016, 18, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, J.; Yu, H.; Wei, X.; Yang, C.; Deng, B. Power spectral density and coherence analysis of alzheimer’s eeg. Cogn. Neurodyn. 2015, 9, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Shida-Tokeshi, J.; Vanderbilt, D.L.; Smith, B.A. Electroencephalography power and coherence changes with age and motor skill development across the first half year of life. PLoS ONE 2018, 13, e0190276. [Google Scholar] [CrossRef] [PubMed]
- Preobrazhenskaya, L.A. Functional regional asymmetry in intrahemisphere coherencein the eeg during conditioning in dogs. Neurosci. Behav. Physiol. 2007, 37, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Vidal Figueredo, R.J.; Pellegrino, F.C. Ritmos cerebrales: Componente frecuencial theta dominante asociado a perros con epilepsia idiopática. Anal. Vet. Murcia 2014, 30, 85–93. [Google Scholar]
- Preobrazhenskaia, L.A. Eeg dynamics during conditioning in symmetrical neocortical regions in dogs. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni i p Pavlova 2002, 52, 441–449. [Google Scholar] [PubMed]
- Preobrazhenskaia, L.A. Functional asymmetry of the neocortex electrical activity during food conditioning in dogs. Zhurnal Vysshei Nervnoi Deiatelnosti IMENI i p Pavlova 2000, 50, 434–446. [Google Scholar] [PubMed]
- Fiedler, P.; Pedrosa, P.; Griebel, S.; Fonseca, C.; Vaz, F.; Supriyanto, E.; Zanow, F.; Haueisen, J. Novel multipin electrode cap system for dry electroencephalography. Brain Topogr. 2015, 28, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kappel, S.L.; Rank, M.L.; Toft, H.O.; Andersen, M.; Kidmose, P. Dry-contact electrode ear-eeg. IEEE Trans. Bio-Med. Eng. 2018. [Google Scholar] [CrossRef]
- Pasion, R.; Paiva, T.O.; Pedrosa, P.; Gaspar, H.; Vasconcelos, B.; Martins, A.C.; Amaral, M.H.; Nobrega, J.M.; Pascoa, R.; Fonseca, C.; et al. Assessing a novel polymer-wick based electrode for eeg neurophysiological research. J. Neurosci. Methods 2016, 267, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Nakamoto, H.; Egawa, S.; Kawamata, T. Continuous eeg monitoring in icu. J. Intensive Care 2018, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Caricato, A.; Melchionda, I.; Antonelli, M. Continuous electroencephalography monitoring in adults in the intensive care unit. Crit. Care 2018, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- James, F.M.; Allen, D.G.; Bersenas, A.M.; Grovum, W.L.; Kerr, C.L.; Monteith, G.; Parent, J.M.; Poma, R. Investigation of the use of three electroencephalographic electrodes for long-term electroencephalographic recording in awake and sedated dogs. Am. J. Vet. Res. 2011, 72, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Musteata, M.; Neculae, I.; Armasu, M.; Balan, C.B.; Solcan, G. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes. Acta Vet. Brno 2013, 82, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, F.C.; Sica, R.E. Canine electroencephalographic recording technique: Findings in normal and epileptic dogs. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2004, 115, 477–487. [Google Scholar] [CrossRef]
- James, F.M.K.; Cortez, M.A.; Monteith, G.; Jokinen, T.S.; Sanders, S.; Wielaender, F.; Fischer, A.; Lohi, H. Diagnostic utility of wireless video-electroencephalography in unsedated dogs. J. Vet. Intern. Med. 2017, 31, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Bochenska, A.; Kwiatkowska, M.; Pomianowski, A.; Monowid, T.; Adamiak, Z. Electroencephalography recording analysis in monitoring of canine idiopathic epilepsy treated with phenobarbital. Pilot study. Pol. J. Vet. Sci. 2014, 17, 717–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basar, E.; Basar-Eroglu, C.; Karakas, S.; Schurmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2001, 39, 241–248. [Google Scholar]
- Murias, M.; Swanson, J.M.; Srinivasan, R. Functional connectivity of frontal cortex in healthy and adhd children reflected in eeg coherence. Cereb. Cortex 2007, 17, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Tapp, P.D.; Siwak, C.T.; Gao, F.Q.; Chiou, J.Y.; Black, S.E.; Head, E.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W.; Su, M.Y. Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 8205–8213. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis. 2011, 2, 242–256. [Google Scholar] [PubMed]
Frequency Band | Channel | Disk (mean ± SDev) | Needle (mean ± SDev) | p Value |
---|---|---|---|---|
Delta | FP1FP2 | 2.207 ± 0.997 | 2.185 ± 1.250 | 0.941 |
C3C4 | 2.423 ± 0.940 | 2.493 ± 1.188 | 0.569 | |
O1O2 | 2.331 ± 1.170 | 1.973 ± 1.149 | 0.222 | |
T3T4 | 2.940 ± 1.061 | 2.724 ± 1.157 | 0.046 | |
Theta | FP1FP2 | 5.384 ± 1.192 | 5.895 ± 1.268 | 0.113 |
C3C4 | 5.727 ± 1.512 | 5.824 ± 1.409 | 0.695 | |
O1O2 | 5.598 ± 1.532 | 5.488 ± 1.317 | 0.491 | |
T3T4 | 5.813 ± 1.689 | 5.450 ± 1.220 | 0.214 | |
Alpha | FP1FP2 | 10.992 ± 1.458 | 9.672 ± 1.444 | 0.001 |
C3C4 | 11.111 ± 1.945 | 10.507 ± 1.834 | 0.234 | |
O1O2 | 11.201 ± 1.764 | 11.232 ± 1.671 | 0.801 | |
T3T4 | 11.489 ± 1.716 | 10.781 ± 2.080 | 0.158 | |
Beta LF | FP1FP2 | 17.332 ± 1.798 | 16.918 ± 1.771 | 0.280 |
C3C4 | 16.436 ± 1.913 | 16.636 ± 1.683 | 0.604 | |
O1O2 | 16.808 ± 1.700 | 17.037 ± 1.471 | 0.717 | |
T3T4 | 17.211 ± 1.617 | 16.273 ± 2.265 | 0.099 | |
Beta HF | FP1FP2 | 24.360 ± 3.649 | 27.305 ± 4.674 | 0.011 |
C3C4 | 26.701 ± 3.842 | 26.818 ± 3.880 | 0.836 | |
O1O2 | 27.432 ± 4.495 | 26.515 ± 3.874 | 0.548 | |
T3T4 | 27.854 ± 4.355 | 28.962 ± 3.400 | 0.428 |
Frequency Band | Chanel | Disk Coherence (mean ± SDev) | Needle Coherence (mean ± SDev) | p Value |
---|---|---|---|---|
Delta | FP1FP2 | 0.372 ± 0.134 | 0.504 ± 0.197 | 0.006 * |
C3C4 | 0.332 ± 0.136 | 0.349 ± 0.199 | 0.631 | |
O1O2 | 0.309 ± 0.119 | 0.336 ± 0.179 | 0.700 | |
T3T4 | 0.297 ± 0.150 | 0.323 ± 0.172 | 0.620 | |
Theta | FP1FP2 | 0.371 ± 0.128 | 0.527 ± 0.169 | 0.001 * |
C3C4 | 0.361 ± 0.169 | 0.335 ± 0.213 | 0.610 | |
O1O2 | 0.321 ± 0.144 | 0.302 ± 0.167 | 0.530 | |
T3T4 | 0.307 ± 0.140 | 0.354 ± 0.180 | 0.183 | |
Alpha | FP1FP2 | 0.311 ± 0.133 | 0.347 ± 0.133 | 0.249 |
C3C4 | 0.331 ± 0.148 | 0.253 ± 0.118 | 0.039 | |
O1O2 | 0.326 ± 0.149 | 0.263 ± 0.110 | 0.113 | |
T3T4 | 0.309 ± 0.141 | 0.278 ± 0.155 | 0.307 | |
Beta LF | FP1FP2 | 0.299 ± 0.144 | 0.254 ± 0.104 | 0.264 |
C3C4 | 0.320 ± 0.143 | 0.237 ± 0.096 | 0.020 | |
O1O2 | 0.317 ± 0.141 | 0.248 ± 0.095 | 0.082 | |
T3T4 | 0.301 ± 0.150 | 0.253 ± 0.111 | 0.329 | |
Beta HF | FP1FP2 | 0.277 ± 0.139 | 0.256 ± 0.100 | 0.716 |
C3C4 | 0.299 ± 0.134 | 0.240 ± 0.091 | 0.058 | |
O1O2 | 0.292 ± 0.134 | 0.256 ± 0.095 | 0.299 | |
T3T4 | 0.279 ± 0.145 | 0.257 ± 0.097 | 0.733 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musteata, M.; Borcea, D.G.; Ștefănescu, R.; Solcan, G.; Lăcătuș, R. Influence of Stainless Needle Electrodes and Silver Disk Electrodes over the Interhemispheric Cerebral Coherence Value in Vigil Dogs. Sensors 2018, 18, 3990. https://doi.org/10.3390/s18113990
Musteata M, Borcea DG, Ștefănescu R, Solcan G, Lăcătuș R. Influence of Stainless Needle Electrodes and Silver Disk Electrodes over the Interhemispheric Cerebral Coherence Value in Vigil Dogs. Sensors. 2018; 18(11):3990. https://doi.org/10.3390/s18113990
Chicago/Turabian StyleMusteata, Mihai, Denis Gabriel Borcea, Raluca Ștefănescu, Gheorghe Solcan, and Radu Lăcătuș. 2018. "Influence of Stainless Needle Electrodes and Silver Disk Electrodes over the Interhemispheric Cerebral Coherence Value in Vigil Dogs" Sensors 18, no. 11: 3990. https://doi.org/10.3390/s18113990
APA StyleMusteata, M., Borcea, D. G., Ștefănescu, R., Solcan, G., & Lăcătuș, R. (2018). Influence of Stainless Needle Electrodes and Silver Disk Electrodes over the Interhemispheric Cerebral Coherence Value in Vigil Dogs. Sensors, 18(11), 3990. https://doi.org/10.3390/s18113990