M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components
Abstract
:1. Introduction
2. Fundamental Limits on Capacity
3. RF and Photovoltaic Energy Harvesting
3.1. Energy Storage
3.2. Power Consumption and Wake-Up Radio Aspects
4. Results and Analysis
4.1. Considered Pathloss Models and Use Cases
4.2. Capacity Evaluations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Ericsson. Mobility Report. 2017. Available online: https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf (accessed on 25 July 2018).
- Andreev, S.; Galinina, O.; Pyattaev, A.; Gerasimenko, M.; Tirronen, T.; Torsner, J.; Sachs, J.; Dohler, M.; Koucheryavy, Y. Understanding the IoT Connectivity Landscape: A Contemporary M2M Radio Technology Roadmap. IEEE Commun. Mag. 2015, 53, 32–40. [Google Scholar] [CrossRef]
- Raghunathan, V.; Schurgers, C.; Sung, P.; Srivastava, M.B. Energy aware wireless microsensor networks. IEEE Signal Process. Mag. 2002, 19, 40–50. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2011, 13, 443–461. [Google Scholar] [CrossRef]
- Chen, X.; Rhee, W.; Wang, Z. Low power sensor design for IoT and mobile healthcare applications. China Commun. 2015, 12, 42–54. [Google Scholar] [CrossRef]
- Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy harvesting wireless communications: A review of recent advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [Google Scholar] [CrossRef]
- Niyato, D.; Hossain, E.; Rashid, M.; Bhargava, V. Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wirel. Commun. 2007, 14, 90–96. [Google Scholar] [CrossRef]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 1, 18–27. [Google Scholar] [CrossRef]
- Tuna, G.; Gungor, V.C. Energy harvesting and battery technologies for powering wireless sensor networks. In Industrial Wireless Sensor Networks: Monitoring, Control and Automation; Woodhead Publishing: Cambridge, UK, 2015; pp. 25–38. [Google Scholar]
- Pinuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Technol. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Vamvakas, P.; Tsiropoulou, E.E.; Vomvas, M.; Papavassiliou, S. Adaptive power management in wireless powered communication networks: A user-centric approach. In Proceedings of the 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA, 18–20 September 2017. [Google Scholar]
- Tsiropoulou, E.E.; Mitsis, G.; Papavassiliou, S. Interest-aware energy collection resource management in machine to machine communications. Ad Hoc Netw. 2018, 68, 48–57. [Google Scholar] [CrossRef]
- Riker, A.; Cerqueira, E.; Curado, M.; Monteiro, E. Data aggregation for machine-to-machine communication with energy harvesting. In Proceedings of the 2015 IEEE International Workshop on Measurements Networking (MN), Coimbra, Portugal, 12–13 October 2015. [Google Scholar]
- Yang, Z.; Xu, W.; Pan, Y.; Pan, C.; Chen, M. Energy Efficient Resource Allocation in Machine-to-Machine Communications with Multiple Access and Energy Harvesting for IoT. IEEE Internet Things J. 2018, 5, 229–245. [Google Scholar] [CrossRef]
- Keskinen, J.; Lehtimaki, S.; Dastpak, A.; Tuukkanen, S.; Flyktman, T.; Kraft, T.; Railanmaa, A.; Lupo, D. Architectural modifications for flexible supercapacitor performance optimization. Electron. Mater. Lett. 2016. [Google Scholar] [CrossRef]
- Lehtimaki, S.; Tuukkanen, S.; Porhonen, J.; Moilanen, P.; Virtanen, J.; Honkanen, M.; Lupo, D. Low-cost solution processable carbon nanotube-based supercapacitors and their characterization. Appl. Phys. A 2014, 117, 1329–1334. [Google Scholar] [CrossRef]
- Lehtimaki, S.; Railanmaa, A.; Keskinen, J.; Kujala, M.; Tuukkanen, S.; Lupo, D. Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors. Sci. Rep. 2017, 7, 46001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisato, G.; Lupo, D.; Ganz, S. Organic and Printed Electronics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2016; p. 604. ISBN 978-9814669740. [Google Scholar]
- Lehtimaki, S.; Li, M.; Salomaa, J.; Porhonen, J.; Kalanti, A.; Tuukkanen, S.; Heljo, P.; Halonen, K.; Lupo, D. Performance of printable supercapacitors in an RF energy harvesting circuit. Int. J. Electr. Power Energy Syst. 2014, 58, 42–46. [Google Scholar] [CrossRef]
- Rinne., J.; Keskinen, J.; Berger, P.R.; Lupo, D.; Valkama, M. Feasibility and Fundamental Limits of Energy-Harvesting Based M2M Communications. In Proceedings of the IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Reprinted (with corrections from Shannon 1948). ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 1, 3–55. [Google Scholar] [CrossRef]
- Radio Noise, Rec. ITU-R P.372-12; ITU-R: Geneva, Switzerland, 2015.
- Proakis, J.G. Digital Communications, 4th ed.; McGraw-Hill: New York, NY, USA, 2000; p. 1002. ISBN 978-0072321111. [Google Scholar]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Gu, L.; Stankovic, J.A. Radio-triggered wake-up for wireless sensor networks. Real-Time Syst. 2005, 29, 157–182. [Google Scholar] [CrossRef]
- Rinne, J.; Keskinen, J.; Berger, P.R.; Lupo, D.; Valkama, M. Viability Bounds of M2M Communication using Energy-Harvesting and Passive Wake-up Radio. IEEE Access 2017, 5, 27868–27878. [Google Scholar] [CrossRef]
- Smith, J.R. (Ed.) Wirelessly Powered Sensor Networks and Computational RFID; Springer: Berlin, Germany, 2013; p. 271. ISBN 978-1441961662. [Google Scholar]
- Tesla, N. The transmission of electrical energy without wires as a means for furthering peace. Electr. World Eng. 1905, 7, 21–24. [Google Scholar]
- Kitsinelis, S. Light Sources, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 295. ISBN 978-1138034044. [Google Scholar]
- NREL. Best Research-Cell Efficiencies. Rev. 10-30-2017. Available online: https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed on 25 July 2018).
- Bird, J. Electrical and Electronic Principles and Technology; Routledge: Abingdon, UK, 2010; p. 427. ISBN 978-0080890562. [Google Scholar]
- Penella-Lopez, M.T.; Gasulla, M. Powering Autonomous Sensors: An Integral Approach with Focus on Solar and RF Energy Harvesting, 1st ed.; Springer: Berlin, Germany, 2011; p. 147. ISBN 978-9400715738. [Google Scholar]
- Ju, Q.; Zhang, Y. Predictive Power Management for Internet of Battery-less Things. IEEE Trans. Power Electron. 2018, 33, 299–312. [Google Scholar] [CrossRef]
- Linear Technology. LTC3401 Datasheet. 2007. Available online: http://cds.linear.com/docs/en/datasheet/3401fb.pdf (accessed on 20 July 2018).
- Linear Technology. LT3007 Datasheet. 2013. Available online: http://cds.linear.com/docs/en/datasheet/3007fa.pdf (accessed on 20 July 2018).
- Texas Instruments. TPS6100x Datasheet. 2015. Available online: http://www.ti.com/lit/ds/symlink/tps61000.pdf (accessed on 20 July 2018).
- Texas Instruments. TPS7480x Datasheet. 2013. Available online: http://www.ti.com/lit/ds/symlink/tps74801-q1.pdf (accessed on 20 July 2018).
- Texas Instruments. TPS6273x Datasheet. 2014. Available online: http://www.ti.com/lit/ds/symlink/tps62730.pdf (accessed on 20 July 2018).
- Maxim Integrated. MAX17620 Datasheet. 2015. Available online: https://datasheets.maximintegrated.com/en/ds/MAX17620.pdf (accessed on 20 July 2018).
- Maxim Integrated. MAX1510/MAX17510 Datasheet. 2016. Available online: https://datasheets.maximintegrated.com/en/ds/MAX1510-MAX17510.pdf (accessed on 20 July 2018).
- Linear Technology. LTC3785 Datasheet. 2007. Available online: http://cds.linear.com/docs/en/datasheet/3785fc.pdf (accessed on 20 July 2018).
- Maxim Integrated. MAX77801 Datasheet. 2015. Available online: https://datasheets.maximintegrated.com/en/ds/MAX77801.pdf (accessed on 20 July 2018).
- Salomaa, J.; Pulkkinen, M.; Halonen, K. A microwatt switched-capacitor voltage doubler-based voltage regulator for ultra-low power energy harvesting systems. Analog Integr. Circuits Signal Process. 2016, 88, 347–358. [Google Scholar] [CrossRef]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2013; p. 173. ISBN 978-1439869895. [Google Scholar]
- Qutab-ud-din, M.; Hazmi, A.; Del Carpio, L.F.; Goekceoglu, A.; Badihi, B.; Amin, P.; Larmo, A.; Valkama, M. Duty Cycle Challenges of IEEE 802.11ah Networks in M2M and IoT Applications. In Proceedings of the European Wireless Conference, Oulu, Finland, 18–20 May 2016. [Google Scholar]
- Mahapatra, C.; Sheng, Z.; Leung, V.C.M. Energy-efficient and distributed data-aware clustering protocol for the Internet-of-Things. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016. [Google Scholar]
- Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In Proceedings of the IEEE 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017. [Google Scholar]
- Fouladlou, M.; Khademzadeh, A. An energy efficient clustering algorithm for Wireless Sensor devices in Internet of Things. In Proceedings of the 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2017. [Google Scholar]
- Ansari, J.; Pankin, D.; Mahonen, P. Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Int. J. Wirel. Inf. Netw. 2009, 16, 118–130. [Google Scholar] [CrossRef]
- Demirkol, I.; Ersoy, C.; Onur, E. Wake-up receivers for wireless sensor networks: Benefits and challenges. IEEE Wirel. Commun. 2009, 16, 88–96. [Google Scholar] [CrossRef]
- Ba, H.; Demirkol, I.; Heinzelman, W. Passive wake-up radios: From devices to applications. Ad Hoc Netw. 2013, 11, 2605–2621. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, K.; Mishra, D.; De, S.; Chowdhury, K.R.; Heinzelman, W. Low-cost wake-up receiver for RF energy harvesting wireless sensor networks. IEEE Sens. J. 2016, 16, 6270–6278. [Google Scholar] [CrossRef]
- Karthaus, U.; Fischer, M. Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power. IEEE J. Solid-State Circuits 2003, 38, 1602–1608. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005; p. 1136. ISBN 978-0471667827. [Google Scholar]
- IEEE P802.11 Wireless LANs TGah Channel Model, (doc.: IEEE 802.11-11/0968r4). 2015. Available online: https://mentor.ieee.org/802.11/dcn/11/11-11-0968-04-00ah-channel-model-text.docx (accessed on 14 November 2018).
- Calculation of Free-Space Attenuation; Rec. ITU-R P.525; ITU-R: Geneva, Switzerland, 2003.
- Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places; EN 12464-1; European Committee for Standardization: Brussels, Belgium, 2011.
Supercapacitor Type | Coefficient for Lower Limit, | Coefficient for Upper Limit, |
---|---|---|
NaCl | 0.973 × 10 | 1.31 × 10 |
KCl | 1.07 × 10 | 1.22 × 10 |
NaNO3 | 0.929 × 10 | 1.09 × 10 |
Recharging Scenario | Coefficient | Coefficient |
---|---|---|
Initial—high | 4.74 × 10 | 2.70 |
Initial—low | 1.71 × 10 | 3.32 |
After cycling—high | 4.64 × 10 | 2.40 |
After cycling—low | 1.88 × 10 | 2.95 |
After hold—high | 6.69 × 10 | 3.53 |
After hold—low | 5.78 × 10 | 3.48 |
Channel | Propagation Loss, , d in Meters and Is 900 MHz |
---|---|
Outdoor-macro | 8 + 37.6 |
Pico-hotzone | 23.3 + 36.7 |
D2D | 58.6-6.17 |
Indoor | 20 |
, for | |
[m] are | |
breakpoint distances for A...F models, correspondingly. |
Parameter | Value(s) | Note(s) |
---|---|---|
Indoor A channel | m | Breakpoint distance |
B | 1 kHz | |
C | 1 bit/s/Hz | → R = 1 kbit/s |
T | 290 K | |
NF | 5 dB | |
dBm | ||
dBm | ||
0.35F | ||
0.1 | ||
0.75 | ||
0.10 | ||
3.16 (5dB) | ||
0.7 | ||
U | 1 V | |
× 10 | ||
0.75 (75%) | ||
0.63 (63%) | [44] | |
1 | ||
1 | ||
10 ... 1.6 × 10 | ||
0.01 | ||
1, 2, 5, 10, 23, and 50 | ||
1 (0 dBi) | ||
0.40 | ||
10 dBm @ 433 MHz | ||
A | 4 cm | |
E | 2 W/m | 200 lx [58] |
0.10 (10%) | ||
10 dBm @ 433 MHz | ||
10 dBi |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinne, J.; Keskinen, J.; Berger, P.R.; Lupo, D.; Valkama, M. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components. Sensors 2018, 18, 3992. https://doi.org/10.3390/s18113992
Rinne J, Keskinen J, Berger PR, Lupo D, Valkama M. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components. Sensors. 2018; 18(11):3992. https://doi.org/10.3390/s18113992
Chicago/Turabian StyleRinne, Jukka, Jari Keskinen, Paul R. Berger, Donald Lupo, and Mikko Valkama. 2018. "M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components" Sensors 18, no. 11: 3992. https://doi.org/10.3390/s18113992
APA StyleRinne, J., Keskinen, J., Berger, P. R., Lupo, D., & Valkama, M. (2018). M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components. Sensors, 18(11), 3992. https://doi.org/10.3390/s18113992