A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors †
Abstract
:1. Introduction
Problem Statement
2. State of the Art
2.1. Fault Detection and Diagnostics
- Quick detection and diagnostics: faults should be identified as soon as possible;
- Isolability: the ability to distinguish between multiple faults, i.e., performing diagnostics;
- Robustness: the method should be insensitive to noise and model uncertainties;
- Novel identifiability: the ability to detect unknown faults;
- Classification error estimate: the method should make its accuracy explicit, e.g., by having a confidence range as output;
- Adaptability: the ability to automatically adapt to changes in the system under test;
- Explanation facility: the ability to identify the precise location and cause of faults;
- Modeling requirements: lower modeling requirements ease implementation and application on real-time processes;
- Storage and computational requirements: minimal storage and computational requirements are necessary for an easy implementation and application on real-time processes;
- Multiple fault identifiability: the ability to diagnose multiple simultaneous faults.
2.2. Virtual Sensors
3. Material and Methods
3.1. Fault Diagnostics
- Sensor is faulty;
- Heater energy meter M is faulty.
3.2. Measuring Deviations from Physical Sensors
4. Results and Discussion
4.1. Building OU44
4.2. Results Using Linear Regression Models
4.3. Results Using Other Models
4.3.1. ARMAX Models
4.3.2. Non-Linear Regression Models
5. Conclusions and Future Directions
5.1. Conclusions
5.2. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- European Parliament, Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings. Off. J. Eur. Union 2010, L153, 13–35. [Google Scholar]
- U.S. Department of Energy. Buildings Energy Data Book; Techreport; U.S. Department of Energy: Washington, DC, USA, 2011.
- Mills, E. Building commissioning: A golden opportunity for reducing energy costs and greenhouse gas emissions in the United States. Energy Effic. 2011, 4, 145–173. [Google Scholar] [CrossRef]
- Kim, J.; Cai, J.; Braun, J.E. Common Faults and Their Prioritization in Small Commercial Buildings: February 2017–December 2017; Techreport NREL/SR-5500-70136; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Dexter, A.; Pakanen, J. Energy Conservation in Buildings and Community Systems—Annex 34; Techreport; International Energy Agency: Paris, France, 2006. [Google Scholar]
- Yu, Y.; Woradechjumroen, D.; Yu, D. A review of fault detection and diagnosis methodologies on air-handling units. Energy Build. 2014, 82, 550–562. [Google Scholar] [CrossRef]
- Isermann, R. Supervision, fault-detection and fault-diagnosis methods—An introduction. Control Eng. Pract. 1997, 5, 639–652. [Google Scholar] [CrossRef]
- Martin, R.A.; Schwabacher, M.; Oza, N.; Srivastava, A. Comparison of Unsupervised Anomaly Detection Methods for Systems Health Management Using Space Shuttle. In Proceedings of the Joint Army Navy NASA Air Force Conference on Propulsion, Denver, CO, USA, 14–17 May 2007. [Google Scholar]
- Cugueró-Escofet, M.À.; Quevedo, J.; Alippi, C.; Roveri, M.; Puig, V.; García, D.; Trovò, F. Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks. J. Hydroinform. 2016, 18, 831–850. [Google Scholar] [CrossRef] [Green Version]
- Trutié-Carrero, E.; Valdés-Santiago, D.; León-Mecías, Á.; Ramírez-Beltrán, J. Burst Detection and Localization using Discrete Wavelet Transform and Cross-Correlation. Rev. Iberoam. Autom. Inf. Ind. 2018, 15, 211–216. [Google Scholar] [CrossRef]
- Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part II. HVAC&R Res. 2005, 11, 169–187. [Google Scholar]
- Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part I. HVAC&R Res. 2005, 11, 3–25. [Google Scholar]
- Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol. Built Environ. 2018, 24, 3–21. [Google Scholar] [CrossRef]
- Mattera, C.G.; Quevedo, J.; Escobet, T.; Shaker, H.R.; Jradi, M. Fault Detection and Diagnostics in Ventilation Units Using Linear Regression Virtual Sensors. In Proceedings of the International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat-Kenitra, Morocco, 21–23 November 2018. in press. [Google Scholar]
- Hanzevack, E.L.; Long, T.W.; Atkinson, C.M.; Traver, M. Virtual sensors for spark ignition engines using neural networks. In Proceedings of the 1997 American Control Conference, Albuquerque, NM, USA, 6 June 1997; Volume 1, pp. 669–673. [Google Scholar]
- Acosta, M.; Kanarachos, S.; Fitzpatrick, M.E. A Virtual Sensor for Integral Tire Force Estimation using Tire Model-less Approaches and Adaptive Unscented Kalman Filter. In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, Spain, 26–28 July 2017; Volume 1, pp. 386–397. [Google Scholar]
- Cugueró-Escofet, M.À.; García, D.; Quevedo, J.; Puig, V.; Espin, S.; Roquet, J. A methodology and a software tool for sensor data validation/reconstruction: Application to the Catalonia regional water network. Control Eng. Pract. 2016, 49, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Hensel, B.; Kabitzsch, K. Generator for modular virtual sensors. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8. [Google Scholar]
- Li, H.; Yu, D.; Braun, J.E. A review of virtual sensing technology and application in building systems. HVAC&R Res. 2011, 17, 619–645. [Google Scholar]
- Cotrufo, N.; Zmeureanu, R. Virtual outdoor air flow meter for an existing HVAC system in heating mode. Autom. Constr. 2018, 92, 166–172. [Google Scholar] [CrossRef]
- Verbert, K.; Babuška, R.; Schutter, B.D. Combining knowledge and historical data for system-level fault diagnosis of HVAC systems. Eng. Appl. Artif. Intell. 2017, 59, 260–273. [Google Scholar] [CrossRef]
- Li, H.; Braun, J.E. Decoupling features and virtual sensors for diagnosis of faults in vapor compression air conditioners. Int. J. Refrig. 2007, 30, 546–564. [Google Scholar] [CrossRef]
- Kim, W. Fault Detection and Diagnosis for Air Conditioners and Heat Pumps Based on Virtual Sensors. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2013. [Google Scholar]
- Kusiak, A.; Li, M.; Zheng, H. Virtual models of indoor-air-quality sensors. Appl. Energy 2010, 87, 2087–2094. [Google Scholar] [CrossRef]
- Renaud, O.; Victoria-Feser, M.P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- Jradi, M.; Sangogboye, F.C.; Mattera, C.G.; Kjærgaard, M.B.; Veje, C.; Jørgensen, B.N. A World Class Energy Efficient University Building by Danish 2020 Standards. Energy Procedia 2017, 132, 21–26. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Greenheck, P.O. Box 410—Schofield, WI 54476. The Basics of Fan Performance Tables, Fan Curves, System Resistance Curves and Fan Laws. 1999. Available online: https://www.rlcraigco.com/pdf/fan-curve-basics.pdf (accessed on 13 November 2018).
- Borne, P.; Popescu, D.; Filip, F.G.; Stefanoiu, D.; Filip, F.G. Optimization in Engineering Sciences: Exact Methods, 1st ed.; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 2013. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Lazarova-Molnar, S.; Shaker, H.R.; Mohamed, N. Fault detection and diagnosis for smart buildings: State of the art, trends and challenges. In Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016; pp. 1–7. [Google Scholar]
- Jørgensen, B.N.; Kjærgaard, M.B.; Lazarova-Molnar, S.; Shaker, H.R.; Veje, C.T. Challenge: Advancing Energy Informatics to Enable Assessable Improvements of Energy Performance in Buildings. In Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, Bangalore, India, 14–17 July 2015; pp. 77–82. [Google Scholar]
- Mattera, C.G.; Jradi, M.; Shaker, H.R. Online Energy Simulator for building fault detection and diagnostics using dynamic energy performance model. Int. J. Low-Carbon Technol. 2018, 13, 231–239. [Google Scholar] [CrossRef]
Model Name | Output | Inputs |
---|---|---|
Model A | , , | |
Model B | , , , | |
Model C | (Equation (4)) | |
Model D | ||
Model E | ||
Model F | , |
Variable | Coefficient |
---|---|
Model A () | |
0.49 ± 0.012 | |
0.23 ± 0.017 | |
9.86 × ± 1.404 × | |
Model B () | |
0.68 ± 0.021 | |
−0.05 ± 0.027 | |
−0.16 ± 0.014 | |
0.03 ± 0.026 | |
Model C () | |
2375 ± 90.2 | |
Model D () | |
2766 ± 25.0 | |
Model E () | |
85.2 ± 0.770 | |
Model F () | |
14.84 ± 1.308 | |
71.58 ± 1.308 |
Date | Tpost-HX | qpost-HX | ωpost-HX | |||
---|---|---|---|---|---|---|
Model A | Model B | Model C | Model D | Model E | Model F | |
2017-03-27 | 0.955 | 0.782 | 0.371 | 0.987 | 0.988 | 0.997 |
2017-03-28 | 0.989 | 0.804 | 0.04 | 0.98 | 0.977 | 0.997 |
2017-03-29 | 0.839 | 0.217 | 0.368 | 0.992 | 0.992 | 0.995 |
2017-03-30 | 0.894 | 0.729 | 0.681 | 0.956 | 0.956 | 0.996 |
2017-03-31 | −1.162 | −1.995 | 0.572 | 0.852 | 0.908 | 0.996 |
2017-04-03 | 0.86 | 0.442 | 0.87 | 0.967 | 0.968 | 0.997 |
2017-04-04 | 0.886 | −0.474 | 0.644 | 0.983 | 0.984 | 0.997 |
2017-04-05 | 0.774 | 0.57 | 0.8 | 0.944 | 0.953 | 0.996 |
2017-04-06 | 0.73 | 0.654 | 0.622 | 0.988 | 0.989 | 0.997 |
2017-04-07 | 0.802 | 0.537 | 0.772 | 0.904 | 0.932 | 0.996 |
Model Name | Output | Inputs |
---|---|---|
SVM | , , , | |
ANN | , , , | |
ARMAX A | , , , | |
ARMAX B | , , , , |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattera, C.G.; Quevedo, J.; Escobet, T.; Shaker, H.R.; Jradi, M. A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors. Sensors 2018, 18, 3931. https://doi.org/10.3390/s18113931
Mattera CG, Quevedo J, Escobet T, Shaker HR, Jradi M. A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors. Sensors. 2018; 18(11):3931. https://doi.org/10.3390/s18113931
Chicago/Turabian StyleMattera, Claudio Giovanni, Joseba Quevedo, Teresa Escobet, Hamid Reza Shaker, and Muhyiddine Jradi. 2018. "A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors" Sensors 18, no. 11: 3931. https://doi.org/10.3390/s18113931
APA StyleMattera, C. G., Quevedo, J., Escobet, T., Shaker, H. R., & Jradi, M. (2018). A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors. Sensors, 18(11), 3931. https://doi.org/10.3390/s18113931