Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Spectral and Laboratory Data Collection
2.3. Alignment of Profile Spectra and Laboratory Data
2.4. External Parameter Orthogonalization (EPO)
- Standardize both the field moist spectra and the dry spectra to have mean zero and unit standard deviation for each soil sample. Note that for a dataset with rows corresponding to soil samples and columns corresponding to wavelengths, this step is completed via row standardization.
- Let matrix D be the difference between the field moist spectra and dry spectra.
- Perform a singular value decomposition on to obtain . Here, U denotes the matrix of left singular vectors, V denotes the matrix of right singular vectors, and Σ denotes the diagonal matrix of non-negative singular values.
- Let matrix , where consists of the first K right singular vectors of V.
- The EPO transformation matrix is defined as P = I − Q.
2.5. Statistical Models
3. Results and Discussion
3.1. PLS Models
3.2. EPO-PLS Models
3.3. EPO-PLS-Bayesian Lasso Models and Covariate Addition
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Veum, K.S.; Sudduth, K.A.; Kremer, R.J.; Kitchen, N.R. Estimating a soil quality index with VNIR reflectance spectroscopy. Soil Sci. Soc. Am. J. 2015, 79, 637–649. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analysis of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Hummel, J.W. Soil organic matter, CEC, and moisture sensing with a prototype NIR spectrometer. Trans. ASAE 1993, 36, 1571–1582. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, D.H.; Sudduth, K.A.; Chung, S.O.; Kitchen, N.R.; Drummond, S.T. Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Trans. ASAE 2009, 52, 683–695. [Google Scholar] [CrossRef]
- Morgan, C.L.S.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 2009, 151, 249–256. [Google Scholar] [CrossRef]
- Stevens, A.; van Wesemael, B.; Vandenschrick, G.; Touré, S.; Tychon, B. Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Sci. Soc. Am. J. 2006, 70, 844–850. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Fystro, G. The prediction of C and N content and their potential mineralization in heterogeneous soil samples using VIS-NIR spectroscopy and comparative methods. Plant Soil 2002, 246, 139–149. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167, 118–124. [Google Scholar] [CrossRef]
- Reeves, J.B. Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 2010, 158, 3–14. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil Till. Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis–NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Morgan, C.L.S. Prediction of soil organic and inorganic carbon at different moisture contents with dry ground VNIR: A comparative study of different approaches. Eur. J. Soil Sci. 2016, 67, 605–615. [Google Scholar] [CrossRef]
- Roger, J.M.; Chauchard, F.; Bellon Maurel, V. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics Intellig. Lab. Syst. 2003, 66, 191–204. [Google Scholar] [CrossRef]
- Ge, Y.; Morgan, C.L.S.; Ackerson, J.P. VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma 2014, 221, 61–69. [Google Scholar] [CrossRef]
- Ackerson, J.P.; Morgan, C.L.S.; Ge, Y. Penetrometer-mounted VisNIR spectroscopy: Application of EPO-PLS to in situ VisNIR spectra. Geoderma 2017, 286, 131–138. [Google Scholar] [CrossRef]
- Kawano, S.; Abe, H.; Iwamoto, M. Development of a calibration equation with temperature compensation for determining the Brix value in intact peaches. J. Near Infrared Spectrosc. 1995, 3, 211–218. [Google Scholar] [CrossRef]
- Wetterlind, J.; Stenberg, B. Near-infrared spectroscopy for within-field soil characterization: Small local calibrations compared with national libraries spiked with local samples. Eur. J. Soil Sci. 2010, 61, 823–843. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Cécillon, L.; Barthès, B.G.; Gomez, C.; Ertlen, D.; Genot, V.; Hedde, M.; Stevens, A.; Brun, J.J. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 2009, 60, 770–784. [Google Scholar]
- Sudduth, K.A.; Hummel, J.W. Evaluation of reflectance methods for soil organic matter sensing. Trans. ASAE 1991, 34, 1900–1909. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Chappell, A.; De Caritat, P.; McKenzie, N.J. On the soil information content of visible–near infrared reflectance spectra. Eur. J. Soil Sci. 2011, 62, 442–453. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Chapter Five—Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Adamchuk, V.I.; Allred, B.; Doolittle, J.; Grote, K.; Viscarra Rossel, R. Tools for proximal soil sensing. In Soil Survey Manual; USDA: Washington, DC, USA, 2015. [Google Scholar]
- Kweon, G.; Lund, E.; Maxton, C.; Drummond, P.; Jensen, K. Situ Measurement of Soil Properties Using a Probe Based VIS-NIR Spectrophotometer; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Kusumo, B.H.; Hedley, C.B.; Hedley, M.J.; Hueni, A.; Tuohy, M.P.; Arnold, G.C. The use of diffuse reflectance spectroscopy for in situ carbon and nitrogen analysis of pastoral soils. Aust. J. Soil Res. 2008, 46, 623–635. [Google Scholar] [CrossRef]
- Christy, C.; Drummond, P.; Kweon, G.; Maxton, C.; Drelling, K.; Jensen, K.; Lund, E. Multiple Sensor System and Method for Mapping Soil in Three Dimensions. U.S. Patent 9285501B2, 15 March 2016. [Google Scholar]
- Cho, Y.; Sheridan, A.H.; Sudduth, K.A.; Veum, K.S. Comparison of field and laboratory VNIR spectroscopy for profile soil property estimation. Trans. ASABE 2017, 60, 1503–1510. [Google Scholar] [CrossRef]
- Wetterlind, J.; Piikki, K.; Stenberg, B.; Söderström, M. Exploring the predictability of soil texture and organic matter content with a commercial integrated soil profiling tool. Eur. J. Soil Sci. 2015, 66, 631–638. [Google Scholar] [CrossRef]
- Cho, Y.; Sudduth, K.A.; Drummond, S.T. Profile soil property estimation using a VIS-NIR-EC-force probe. Trans. ASABE 2017, 60, 683–692. [Google Scholar] [CrossRef]
- USDA-NRCS Land Resource Regions and Major Land Resource Areas of the United States. Available online: https://naldc.nal.usda.gov/download/CAT82777198/PDF (accessed on 2 November 2018).
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. Available online: https://dl.sciencesocieties.org/publications/books/abstracts/sssabookseries/methodsofsoilan3/961 (accessed on 2 November 2018).
- Gee, G.W.; Or, D. Particle-Size Analysis. Available online: https://s3.amazonaws.com/academia.edu.documents/42835761/2_4_Particle_Size_Analysis_2002.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1541150374&Signature=mvBgnQEiCff9TECuQCXyr2sg78Q%3D&response-content-disposition=inline%3B%20filename%3D2_4_Particle_Size_Analysis_2002.pdf (accessed on 2 November 2018).
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mevik, B.H.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat. Software 2007, 18, 1–23. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The Bayesian Lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–401. [Google Scholar]
- Gelfand, A.E. Gibbs sampling. J. Am. Stat. Assoc. 2000, 95, 1300–1304. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference; Duxbury: Pacific Grove, CA, USA, 2002. [Google Scholar]
Location | Soil Textural Class | Taxonomic Class | # Fields | # Profiles |
---|---|---|---|---|
Indiana Outwash MLRA 98 | Loam; Sandy loam | Sebewa loam: Fine-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Typic Argiaquolls; Tracy sandy loam: Coarse-loamy, mixed, active, mesic Ultic Hapludalfs | 6 | 24 |
Central Missouri Claypan MLRA 113 | Silt loam | Adco silt loam: Fine, smectitic, mesic Vertic Albaqualfs; Mexico silt loam: Fine, smectitic, mesic Vertic Epiaqualfs; Leonard silt loam: Fine, smectitic, mesic Vertic Epiaqualfs | 6 | 60 |
Missouri Upland Loess MLRA 109 | Silt loam; Silty clay loam | Higginsville silt loam: Fine-silty, mixed, superactive, mesic Aquic Argiudolls; Wakenda silt loam: Fine-silty, mixed, superactive, mesic Typic Argiudolls; Knox silty clay loam: Fine-silty, mixed, superactive, mesic Mollic Hapludalfs | 3 | 23 |
Missouri River Alluvium MLRA 115B | Silt loam; Silty clay loam | Lowmo silt loam: Coarse-silty, mixed, superactive, mesic Fluventic Hapludolls; Peers silty clay loam: Fine-silty, mixed, superactive, mesic Fluvaquentic Hapludolls | 3 | 12 |
Mississippi River Delta Alluvium MLRA 131A | Clay; Sandy loam; Loam, Silt loam; | Tiptonville silt loam: Fine-silty, mixed, superactive, thermic Oxyaquic Argiudolls; Reelfoot loam and sandy loam: Fine-silty, mixed, superactive, thermic Aquic Argiudolls; Steele sandy loam: Sandy over clayey, mixed, superactive, nonacid, thermic Aquic Udifluvents; Dundee silt loam: Fine-silty, mixed, active, thermic Typic Endoaqualfs; Portageville clay: Fine, smectitic, calcareous, thermic Vertic Endoaquolls; Dubbs silt loam: Fine-silty, mixed, active, thermic Typic Hapludalfs | 4 | 34 |
Training (n = 308) | Testing (n = 200) | EPO Calibration (n = 200) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | Max | Min | Mean | SD | Max | Min | Mean | SD | |
SOC † | 2.95 | 0.06 | 0.70 | 0.45 | 2.72 | 0.06 | 0.68 | 0.44 | 1.98 | 0.03 | 0.65 | 0.43 |
TN ‡ | 0.23 | 0.01 | 0.06 | 0.04 | 0.21 | 0.01 | 0.06 | 0.04 | 0.16 | 0.01 | 0.06 | 0.04 |
Sand | 98.0 | 0.6 | 22.1 | 26.0 | 96.2 | 0.5 | 24.2 | 27.2 | 97.8 | 0.3 | 23.7 | 28.6 |
Silt | 83.7 | 1.2 | 51.4 | 18.7 | 81.9 | 2.6 | 50.8 | 19.8 | 81.3 | 1.4 | 49.9 | 20.0 |
Clay | 68.9 | 0.8 | 26.4 | 14.4 | 72.3 | 1.2 | 25.0 | 14.5 | 69.7 | 0.8 | 26.4 | 15.5 |
Moisture | 41.8 | 2.8 | 23.3 | 6.4 | 73.9 | 3.8 | 22.5 | 7.6 | 42.2 | 4.6 | 22.7 | 6.7 |
Soil Property | Model Type | Training Set (n = 308) | Test Set (n = 200) | # PLS Factors | # EPO Factors | RMSEP | R2 | Bias | Slope |
---|---|---|---|---|---|---|---|---|---|
SOC | PLS | Dry | Dry | 14 | 0 | 0.188 | 0.82 | 0.01 | 0.86 |
SOC | PLS | Dry | Field Moist | 14 | 0 | 0.960 | 0.23 | 0.52 | 1.00 |
SOC | PLS | Field Moist | Field Moist | 14 | 0 | 0.265 | 0.64 | −0.01 | 0.69 |
SOC | EPO-PLS | Dry | Field Moist | 12 | 6 | 0.327 | 0.46 | −0.01 | 0.49 |
SOC | EPO-PLS | Field Moist | Field Moist | 9 | 7 | 0.262 | 0.65 | 0.01 | 0.69 |
SOC | EPO-PLS-BL | Dry | Field Moist | 13 | 6 | 0.316 | 0.49 | −0.01 | 0.54 |
SOC | EPO-PLS-BL-C | Dry | Field Moist | 3 | 5 | 0.310 | 0.55 | 0.03 | 0.41 |
TN | PLS | Dry | Dry | 13 | 0 | 0.017 | 0.81 | 0.00 | 0.81 |
TN | PLS | Dry | Field Moist | 14 | 0 | 0.068 | 0.20 | 0.02 | 0.81 |
TN | PLS | Field Moist | Field Moist | 12 | 0 | 0.024 | 0.63 | 0.00 | 0.67 |
TN | EPO-PLS | Dry | Field Moist | 10 | 6 | 0.032 | 0.34 | 0.00 | 0.43 |
TN | EPO-PLS | Field Moist | Field Moist | 8 | 6 | 0.024 | 0.63 | 0.00 | 0.68 |
TN | EPO-PLS-BL | Dry | Field Moist | 4 | 3 | 0.029 | 0.52 | 0.00 | 0.34 |
TN | EPO-PLS-BL-C | Dry | Field Moist | 3 | 5 | 0.027 | 0.53 | 0.00 | 0.44 |
Clay | PLS | Dry | Dry | 11 | 0 | 6.281 | 0.81 | 0.11 | 0.84 |
Clay | PLS | Dry | Field Moist | 11 | 0 | 44.539 | 0.03 | −36.26 | −0.23 |
Clay | PLS | Field Moist | Field Moist | 11 | 0 | 8.388 | 0.66 | −0.61 | 0.69 |
Clay | EPO-PLS | Dry | Field Moist | 12 | 9 | 10.597 | 0.49 | −0.73 | 0.60 |
Clay | EPO-PLS | Field Moist | Field Moist | 8 | 6 | 7.775 | 0.71 | −0.28 | 0.72 |
Clay | EPO-PLS-BL | Dry | Field Moist | 16 | 8 | 9.594 | 0.63 | −2.98 | 0.76 |
Clay | EPO-PLS-BL-C | Dry | Field Moist | 3 | 10 | 9.048 | 0.61 | −0.38 | 0.62 |
Silt | PLS | Dry | Dry | 14 | 0 | 11.214 | 0.68 | 0.30 | 0.69 |
Silt | PLS | Dry | Field Moist | 14 | 0 | 159.498 | 0.08 | −156.88 | 0.79 |
Silt | PLS | Field Moist | Field Moist | 13 | 0 | 11.964 | 0.63 | −0.40 | 0.64 |
Silt | EPO-PLS | Dry | Field Moist | 6 | 10 | 15.013 | 0.42 | −0.97 | 0.43 |
Silt | EPO-PLS | Field Moist | Field Moist | 12 | 1 | 11.908 | 0.63 | −0.25 | 0.65 |
Silt | EPO-PLS-BL | Dry | Field Moist | 5 | 8 | 14.433 | 0.47 | −1.39 | 0.46 |
Silt | EPO-PLS-BL-C | Dry | Field Moist | 5 | 8 | 13.496 | 0.53 | −0.30 | 0.56 |
Sand | PLS | Dry | Dry | 18 | 0 | 13.081 | 0.77 | −0.08 | 0.85 |
Sand | PLS | Dry | Field Moist | 17 | 0 | 155.874 | 0.23 | −79.94 | 2.04 |
Sand | PLS | Field Moist | Field Moist | 13 | 0 | 12.069 | 0.75 | 0.59 | 0.75 |
Sand | EPO-PLS | Dry | Field Moist | 9 | 10 | 19.899 | 0.54 | 0.25 | 0.74 |
Sand | EPO-PLS | Field Moist | Field Moist | 15 | 1 | 14.289 | 0.72 | 0.48 | 0.73 |
Sand | EPO-PLS-BL | Dry | Field Moist | 6 | 10 | 17.855 | 0.58 | −1.21 | 0.68 |
Sand | EPO-PLS-BL-C | Dry | Field Moist | 4 | 10 | 16.197 | 0.66 | −2.82 | 0.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. Veum, K.; A. Parker, P.; A. Sudduth, K.; H. Holan, S. Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors 2018, 18, 3869. https://doi.org/10.3390/s18113869
S. Veum K, A. Parker P, A. Sudduth K, H. Holan S. Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors. 2018; 18(11):3869. https://doi.org/10.3390/s18113869
Chicago/Turabian StyleS. Veum, Kristen, Paul A. Parker, Kenneth A. Sudduth, and Scott H. Holan. 2018. "Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization" Sensors 18, no. 11: 3869. https://doi.org/10.3390/s18113869
APA StyleS. Veum, K., A. Parker, P., A. Sudduth, K., & H. Holan, S. (2018). Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors, 18(11), 3869. https://doi.org/10.3390/s18113869