A New Dataset for Source Identification of High Dynamic Range Images
Abstract
:1. Introduction
2. The Dataset
- -
- images taken from the tripod (TRIPOD),
- -
- images taken by hand (HAND),
- -
- images taken by a shaky hand (SHAKING).
3. PRNU-Based Source Identification
4. Experiments
- -
- HDR, which contained a set of 50–87 flat HDR images per device,
- -
- SDR, which contained a set of 50–59 flat SDR images per device,
- -
- MIX, which contained a set of 100–137 images, including both flat HDR and flat SDR images per device.
5. Results
5.1. Analysis in Terms of Image Type: SDR vs. HDR
5.2. Analysis in Terms of Fingerprint Type
5.3. MIX Category Results’ Analysis
5.4. Reliability of Source Identification
5.5. Analysis of Low PCE Values
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piva, A. An Overview on Image Forensics. ISRN Signal Process. 2013, 2013, 1–22. [Google Scholar] [CrossRef]
- De Rosa, A.; Piva, A.; Fontani, M.; Iuliani, M. Investigating multimedia contents. In Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST), Rome, Italy, 13–16 October 2014; pp. 1–6. [Google Scholar]
- Stamm, M.; Wu, M.; Liu, K. Information Forensics: An Overview of the First Decade. IEEE Access 2013, 1, 167–200. [Google Scholar] [CrossRef]
- Wen, C.Y.; Yang, K.T. Image authentication for digital image evidence. Forensic Sci. J. 2006, 5, 1–11. [Google Scholar]
- Cheddad, A.; Condell, J.; Curran, K.; Mc Kevitt, P. Digital image steganography: Survey and analysis of current methods. Signal Process. 2010, 90, 727–752. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, A.; Wu, M.; Liu, K. Image authentication via intrinsic fingerprints. In Proceedings of the Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, USA, 28 January–1 February 2007; Volume 6505, pp. 1J–1K. [Google Scholar]
- Bayram, S.; Sencar, H.; Memon, N.; Avcibas, I. Source camera identification based on CFA interpolation. In Proceedings of the IEEE International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; Volume 3. [Google Scholar]
- Geradts, Z.J.; Bijhold, J.; Kieft, M.; Kurosawa, K.; Kuroki, K.; Saitoh, N. Methods for identification of images acquired with digital cameras. In Proceedings of the Enabling Technologies for Law Enforcement and Security, Boston, MA, USA, 6–8 November 2001; Volume 4232, pp. 505–513. [Google Scholar]
- Kharrazi, M.; Sencar, H.T.; Memon, N. Blind source camera identification. In Proceedings of the 2004 International Conference on Image Processing, Singapore, 24–27 October 2004; Volume 1, pp. 709–712. [Google Scholar]
- Dirik, A.E.; Sencar, H.T.; Memon, N. Digital single lens reflex camera identification from traces of sensor dust. IEEE Trans. Inf. Forensics Secur. 2008, 3, 539–552. [Google Scholar] [CrossRef]
- Chen, M.; Fridrich, J.; Goljan, M.; Lukás, J. Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 2008, 3, 74–90. [Google Scholar] [CrossRef]
- Lukas, J.; Fridrich, J.; Goljan, M. Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Xiong, Y.; Pulli, K. Fast image stitching and editing for panorama painting on mobile phones. In Proceedings of the CVPR Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 47–52. [Google Scholar]
- Kozko, D. Enabling Multiple Field of View Image Capture within a Surround Image Mode for Multi-Lense Mobile Devices. U.S. Patent 9,380,207, 28 June 2016. [Google Scholar]
- Bhardwaj, A.; Raman, S. Robust PCA-based solution to image composition using augmented Lagrange multiplier (ALM). Vis. Comput. 2016, 32, 591–600. [Google Scholar] [CrossRef]
- Bouwmans, T.; Javed, S.; Zhang, H.; Lin, Z.; Otazo, R. On the Applications of Robust PCA in Image and Video Processing. Proc. IEEE 2018, 106, 1427–1457. [Google Scholar] [CrossRef]
- Artusi, A.; Richter, T.; Ebrahimi, T.; Mantiuk, R.K. High Dynamic Range Imaging Technology. IEEE Signal Process. Mag. 2017, 34, 165–172. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Wang, C.M. A Novel Approach to Steganography in High-Dynamic-Range Images. IEEE MultiMedia 2009, 16, 70–80. [Google Scholar] [CrossRef]
- Nagurammal, A.; Meyyappan, T. Lossless Image Watermarking for HDR Images Using Tone Mapping. Int. J. Comput. Sci. Netw. Secur. IJCSNS 2013, 13, 113–117. [Google Scholar]
- Aguerrebere, C.; Delon, J.; Gousseau, Y.; Musé, P. Best algorithms for HDR image generation. A study of performance bounds. SIAM J. Imaging Sci. 2014, 7, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Bateman, P.J.; Ho, A.T.; Briffa, J.A. Image forensics of high dynamic range imaging. In International Workshop on Digital Watermarking; Springer: Berlin/Heidelberg, Germany, 2011; pp. 336–348. [Google Scholar]
- Adams, A.; Talvala, E.V.; Park, S.H.; Jacobs, D.E.; Ajdin, B.; Gelfand, N.; Dolson, J.; Vaquero, D.; Baek, J.; Tico, M.; et al. The Frankencamera: An experimental platform for computational photography. In Proceedings of the ACM Transactions on Graphics (TOG), Los Angeles, CA, USA, 26–30 July 2010; Volume 29, p. 29. [Google Scholar]
- Gelfand, N.; Adams, A.; Park, S.H.; Pulli, K. Multi-exposure imaging on mobile devices. In Proceedings of the 18th ACM international conference on Multimedia, Firenze, Italy, 25–29 October 2010; pp. 823–826. [Google Scholar]
- Mertens, T.; Kautz, J.; Van Reeth, F. Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2009; pp. 161–171. [Google Scholar]
- Mantiuk, R.; Cichowicz, M.; Smyk, M. Implementation of HDR photographic pipeline in mobile devices. In Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 25–27 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 367–374. [Google Scholar]
- Adams, A.; Gelfand, N.; Pulli, K. Viewfinder alignment. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 27, pp. 597–606. [Google Scholar]
- Robertson, M.A.; Borman, S.; Stevenson, R.L. Dynamic range improvement through multiple exposures. In Proceedings of the 1999 International Conference on Image ProcessingImage Processing, Kobe, Japan, 24–28 October 1999; Volume 3, pp. 159–163. [Google Scholar]
- Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Trans. Graph. TOG 2002, 21, 267–276. [Google Scholar]
- Guarnieri, G. High Dynamic Range Images: Processing, Display and Perceptual Quality Assessment; University of Trieste: Trieste, Italy, 2009. [Google Scholar]
- Shullani, D.; Fontani, M.; Iuliani, M.; Al Shaya, O.; Piva, A. VISION: A video and image dataset for source identification. EURASIP J. Inf. Secur. 2017, 2017, 15. [Google Scholar] [CrossRef]
- Julliand, T.; Nozick, V.; Talbot, H. Image noise and digital image forensics. In Proceedings of the International Workshop on Digital Watermarking, Tokyo, Japan, 7–10 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–17. [Google Scholar]
- Goljan, M.; Chen, M.; Fridrich, J. Identifying common source digital camera from image pairs. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 6, p. VI-125. [Google Scholar]
- Goljan, M.; Fridrich, J.; Filler, T. Large scale test of sensor fingerprint camera identification. In Proceedings of the Media Forensics and Security, San Jose, CA, USA, 18–22 January 2009; Volume 7254, p. 72540I. [Google Scholar]
- Sencar, H.T.; Memon, N. Digital image forensics: There Is More to a Picture Than Meets the Eye. In Counter-Forensics: Attacking Image Forensics; Springer: New York, NY, USA, 2013; pp. 327–366. [Google Scholar]
- Li, C.T. Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2010, 5, 280–287. [Google Scholar]
- Besnard, G.; Hild, F.; Roux, S. “Finite-element” displacement fields analysis from digital images: Application to Portevin–Le Châtelier bands. Exp. Mech. 2006, 46, 789–803. [Google Scholar] [CrossRef]
- Calì, M.; Oliveri, S.M.; Ambu, R.; Fichera, G. An Integrated Approach to Characterize the Dynamic Behaviour of a Mechanical Chain Tensioner by Functional Tolerancing. J. Mech. Eng. 2018, 64, 245–257. [Google Scholar]
Device Class | Device Name | Brand | Model | OS | Image Resolution | SDR Flat | HDR Flat | SDR Hand | HDR Hand | SDR Shaking | HDR Shaking | SDR Tripod | HDR Tripod |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A12 | Huawei-Honor6plus | Huawei | PE-TL10 | Android 6.0 | 2448 × 3264 | 50 (wall) | 50 (wall) | 20 | 20 | 20 | 20 | 20 | 20 |
A13 | Huawei-Honor6plus | Huawei | PE-TL20 | Android 4.4.2 | 2448 × 3264 | 50 (wall) | 50 (wall) | 20 | 20 | 20 | 20 | 20 | 20 |
A02 | Huawei-P8 | Huawei | GRA-L09 | Android 6.0 | 4160 × 3120 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
A06 | Huawei-Y5 | Huawei | CUN-L21 | Android 5.1 | 3264 × 2448 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
A04 | Huawei-P10 | Huawei | VTR-AL00 | Android 7.0 | 3968 × 2976 | 51 (wall) | 50 (wall) | 15 | 15 | 20 | 20 | 26 | 28 |
A03 | Huawei-Honor9 | Huawei | STF-AL00 | Android 7.0 | 3264 × 1840 | 50 (sky) | 50 (sky) | 20 | 20 | 20 | 20 | 20 | 20 |
A05 | Huawei-Mate10Pro | Huawei | BLA-L29 | Android 8.0 | 3968 × 2976 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
A09 | Galaxy-Note5 | Samsung | SM-N920C | Android 7.0 | 5312 × 2988 | 50 (sky) | 50 (sky) | 24 | 24 | 24 | 24 | 24 | 24 |
A07 | Galaxy-S7 | Samsung | SM-G930F | Android 7.0 | 4032 × 3024 | 52 (wall) | 50 (wall) | 21 | 21 | 24 | 24 | 21 | 21 |
A08 | Galaxy-S7 | Samsung | SM-G930F | Android 7.0 | 4032 × 2268 | 50 (sky) | 50 (sky) | 24 | 24 | 24 | 24 | 24 | 24 |
A10 | Galaxy-J7 | Samsung | SM-J730F | Android 7.0 | 4128 × 3096 | 50 (sky) | 50 (sky) | 24 | 24 | 24 | 24 | 24 | 24 |
A15 | Xiaom-3 | Xiaomi | Redmi Note3 | Android 7.1 | 4608 × 2592 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
A11 | Xiaomi5 | Xiaomi | MI 5 | Android 7.0 | 3456 × 4608 | 50 (wall) | 87 (wall) | 21 | 21 | 21 | 21 | 21 | 21 |
A14 | Xiaomi-5A | Xiaomi | Note 5A Prime | Android 7.1 | 4160 × 2340 | 50 (sky) | 50 (sky) | 24 | 24 | 24 | 24 | 24 | 24 |
A01 | GioneeS55 | Gionee | GN9000 | Android 4.4 | 3120 × 4208 | 50 (sky) | 50 (sky) | 20 | 20 | 20 | 20 | 20 | 20 |
A17 | AsusZenfone-2 | Asus | ASUS_Z00ED | Android 6.1 | 3264 × 1836 | 50 (sky) | 50 (sky) | 24 | 24 | 24 | 24 | 24 | 24 |
A16 | OnePlus-3t | OnePlus | A3003 | Android 8.0 | 4640 × 3480 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
I06 | iPhone 5S | Apple | 15A372 | iOS 11 | 3264 × 2448 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
I04 | iPad Air | Apple | A1475 | iOS 11.0.1 | 2592 × 1936 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
I05 | iPhone 6 | Apple | A1586 | iOS 11.3 | 2448 × 3264 | 50 (wall) | 50 (wall) | 21 | 21 | 21 | 24 | 21 | 21 |
I02 | iPhone se | Apple | A1723 | iOS 10.3.3 | 4032 × 3024 | 54 (sky) | 54 (sky) | 19 | 19 | 19 | 19 | 19 | 19 |
I03 | iPhone 7 | Apple | A1778 | iOS 11.3 | 4032 × 3024 | 50 (wall) | 50 (wall) | 24 | 24 | 24 | 24 | 24 | 24 |
I01 | iPhone-8 | Apple | A1863 | iOS 11.3 | 3024 × 4032 | 50 (sky) | 50 (sky) | 15 | 15 | 15 | 15 | 15 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaya, O.A.; Yang, P.; Ni, R.; Zhao, Y.; Piva, A. A New Dataset for Source Identification of High Dynamic Range Images. Sensors 2018, 18, 3801. https://doi.org/10.3390/s18113801
Shaya OA, Yang P, Ni R, Zhao Y, Piva A. A New Dataset for Source Identification of High Dynamic Range Images. Sensors. 2018; 18(11):3801. https://doi.org/10.3390/s18113801
Chicago/Turabian StyleShaya, Omar Al, Pengpeng Yang, Rongrong Ni, Yao Zhao, and Alessandro Piva. 2018. "A New Dataset for Source Identification of High Dynamic Range Images" Sensors 18, no. 11: 3801. https://doi.org/10.3390/s18113801
APA StyleShaya, O. A., Yang, P., Ni, R., Zhao, Y., & Piva, A. (2018). A New Dataset for Source Identification of High Dynamic Range Images. Sensors, 18(11), 3801. https://doi.org/10.3390/s18113801