Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications
Abstract
:1. Introduction
2. The Underwater Light Field
3. LED Light Source
4. Photodetectors
4.1. Types and Characteristics
4.2. Amplification
4.3. Noise Sources
5. Filters
5.1. Terminology for Optical Bandpass Filters
5.2. Colored Glass Filter
5.3. Thin Film Filter
5.4. Selection and Setup of Components
6. Signal-to-Noise Evaluation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AOI | Angle of Incidence |
APD | Avalanche Photodiode |
AUV | Autonomous Underwater Vehicle |
CDOM | Colored Dissolved Organic Matter |
CHA | Cone Half Angle |
CWL | Center Wavelength |
DC | Direct Current |
DUT | Device Under Test |
FOV | Field of View |
FWHM | Full Width at Half Maximum |
GaP | Gallium Phosphide |
IEC | International Electrotechnical Commission |
IR | Infrared Radiation |
LD | Laser Diode |
LED | Light Emitting Diode |
NEP | Noise Equivalent Power |
OSNR | Optical Signal-to-Noise Ratio |
PAR | Photosynthetically Available Radiation |
PMT | Photo Multiplier Tube |
ROV | Remotely Operated Vehicle |
Si PIN PD | Silicon-Positive Intrinsic-Negative Photodiode |
SiPM | Silicon Photo Multiplier |
SNR | Signal-to-Noise Ratio |
TIA | Trans Impedance Amplifier |
UV | Ultraviolet |
UWOC | Under Water Optical Communication |
VLC | Visible Light Communication |
Appendix A.
Appendix A.1. Hydrolight Simulations
Appendix A.2. LED Spectra Modeling
Appendix A.3. Filter Measurements
Appendix A.4. Signal-to-Noise Calculations
References
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Simpson, J.A.; Hughes, B.L.; Muth, J.F. Smart transmitters and receivers for underwater free-space optical communication. IEEE J. Sel. Areas Commun. 2012, 30, 964–974. [Google Scholar] [CrossRef]
- Witas, K.; Heyduk, S.; Vasinek, V.; Vitasek, J.; Latal, J. Low noise omnidirectional receiver for mobile FSO networks. In Proceedings of the SPIE 8774, Optical Sensors 2013, Prague, Czech Republic, 3 May 2013; pp. 1–12. [Google Scholar]
- Anguita, D.; Brizzolara, D.; Parodi, G. Prospects and problems of optical diffuse wireless communication for underwater wireless sensor networks (UWSNs). In Wireless Sensor Networks: Application-Centric Design; Tan, Y.K., Ed.; InTech: London, UK, 2010; pp. 1–26. ISBN 978-953-307-321-7. [Google Scholar]
- Leon, P.; Roland, F.; Brignone, L.; Opderbecke, J.; Greer, J.; Khalighi, M.A.; Hamza, T.; Bourennane, S.; Bigand, M. A new underwater optical modem based on highly sensitive Silicon Photomultipliers. In Proceedings of the OCEANS 2017, Anchorage, AK, USA, 18–21 September 2017; pp. 1–6. [Google Scholar]
- Farr, N.; Chave, A.D.; Freitag, L.; Preisig, J.; White, S.N.; Yoerger, D.; Sonnichsen, F. Optical Modem Technology for Seafloor Observatories. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–22 September 2006; pp. 1–6. [Google Scholar]
- Arnon, S. Underwater optical wireless communication network. Opt. Eng. 2010, 49. [Google Scholar] [CrossRef]
- Hanson, F.; Radic, S. High bandwidth underwater optical communication. Appl. Opt. 2008, 47, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Cochenour, B. Temporal Response of the Underwater Optical Channel for High-Bandwidth Wireless Laser Communications. IEEE J. Ocean. Eng. 2013, 38, 730–742. [Google Scholar] [CrossRef]
- Nakamura, K.; Mizukoshi, I.; Hanawa, M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. Opt. Express 2015, 23, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Oubei, H.M.; Duran, J.R.; Janjua, B.; Wang, H.Y.; Tsai, C.T.; Chi, Y.C.; Ng, T.K.; Kuo, H.C.; He, J.H.; Alouini, M.S.; et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 2015, 23, 23302–23309. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Liu, X.; Yi, S.; Huang, Y.; Zhang, S.; Zhou, X.; Hu, L.; Zheng, L.; Liu, R. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 2017, 25, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.R. Wireless Infrared Communications, 1st ed.; Springer: New York, NY, USA, 1994; pp. 3–78. ISBN 978-0-7923-9476-1. [Google Scholar]
- Beshr, M.; Michie, C.; Andonovic, I. Evaluation of Visible Light Communication System Performance in the Presence of Sunlight Irradiance. In Proceedings of the 2015 International Conference on Transparent Optical Networks, Budapest, Hungary, 5–9 July 2015; pp. 1–4. [Google Scholar]
- Islim, M.S.; Haas, H. An Investigation of the Solar Irradiance Effect on Visible Light Communications. In Proceedings of the 2017 IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Chung, Y.H.; Oh, S.B. Efficient Optical Filtering for Outdoor Visible Light Communications in the Presence of Sunlight or Artificial Light. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013; pp. 749–752. [Google Scholar]
- Giles, J.W.; Bankman, I.N. Underwater optical communications systems. Part 2: basic design considerations. In Proceedings of the 2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; pp. 1700–1705. [Google Scholar]
- Hamza, T.; Khalighi, M.A.; Bourennane, S.; Leon, P.; Opderbecke, J. Investigation of solar noise impact in the performance of underwater wireless optical communication links. Opt. Express 2016, 24, 25832–25845. [Google Scholar] [CrossRef] [PubMed]
- Cossu, G.; Sturniolo, A.; Messa, A.; Scaradozzi, D.; Ciaramella, E. Full-Fledged 10Base-T Ethernet Underwater Optical Wireless Communication System. IEEE J. Sel. Areas Commun. 2018, 36, 194–202. [Google Scholar] [CrossRef]
- Farr, N.E.; Pontbriand, C.T.; Ware, J.D.; Pelletier, L.-P.A. Non-visible Light Underwater Optical Communications. In Proceedings of the 2016 IEEE Underwater Communications and Networking Conference, Lerici, Italy, 30 August–1 September 2016; pp. 1–4. [Google Scholar]
- Kedar, D.; Arnon, S. Subsea ultraviolet solar-blind broadband free-space optics communication. Opt. Eng. 2009, 48. [Google Scholar] [CrossRef]
- Ge, P.; Liang, X.; Wang, J.; Zhao, C. Optical Filters Design for Multi-Color Visible Light Communications. In Proceedings of the 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar]
- Jerlov, N.G. Optical Oceanography, 1st ed.; Elsevier Publishing Company: Amsterdam, The Netherlands, 1968; pp. 115–132. ISBN 0080870414. [Google Scholar]
- Solonenko, M.G.; Mobley, C.D. Inherent optical properties of Jerlov water types. Appl. Opt. 2015, 54, 5392–5401. [Google Scholar] [CrossRef] [PubMed]
- Cochennour, B.; Mullen, L. Free-space optical communication underwater. In Advanced Optical Wireless Communication Systems; Arnon, S., Barry, J.R., Karagiannidis, G.K., Schober, R., Uysal, M., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 201–272. ISBN 978-0521197878. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters, 1st ed.; Academic Press Inc.: San Diego, CA, USA, 1994; pp. 61–128. ISBN 978-00125027502. [Google Scholar]
- Hieronymi, M.; Macke, A. On the influence of wind and waves on underwater irradiance fluctuations. Ocean Sci. 2012, 8, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Darecki, M.; Stramski, D.; Sokolski, M. Measurements of high-frequency light fluctuations induced by sea surface waves with an Underwater Porcupine Radiometer System. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Gernez, P.; Antoine, D. Field characterization of wave-induced underwater light field fluctuations. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Sticklus, J.; Hoeher, P.A.; Röttgers, R. Optical Underwater Communication: The Potential of Using Converted Green LEDs in Coastal Waters. IEEE J. Ocean. Eng. 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Datasheet OSRAM Golden Dragon LD W5SM; OSRAM Opto Semiconductors GmbH: Regensburg, Germany, 2010; pp. 1–23. Available online: https://www.osram.com/os/ (accessed on 14 September 2018).
- Reifegerste, F.; Lienig, J. Modeling of the Temperature and Current Dependence of LED Spectra. J. Light Vis. Environ. 2008, 32, 288–294. [Google Scholar] [CrossRef]
- Datasheet OSRAM BPW 34 B Silicon PIN Photodiode with Enhanced Blue Sensitivity; OSRAM Opto Semiconductors GmbH: Regensburg, Germany, 2014; pp. 1–11. Available online: https://www.osram.com/os/ (accessed on 14 September 2018).
- Datasheet OSRAM BPW 34 Silicon PIN Photodiode; OSRAM Opto Semiconductors GmbH: Regensburg, Germany, 2016; pp. 1–8. Available online: https://www.osram.com/os/ (accessed on 14 September 2018).
- Graeme, J. Photodiode Amplifiers, 1st ed.; McGraw Hill: New York, NY, USA, 1994; pp. 21–128. ISBN 978-0070242470. [Google Scholar]
- Lanzagorta, M. Underwater Communications; Tranter, W., Ed.; Morgan and Claypool Publishers: San Rafael, CA, USA, 2013; pp. 55–73. ISBN 978-1608458448. [Google Scholar]
- Anguita, D.; Brizzolara, D.; Parodi, G.; Hu, Q. Optical Wireless Underwater Communication for AUV : Preliminary Simulation and Experimental Results. In Proceedings of the 2011 OCEANS, Santander, Spain, 6–9 June 2011; pp. 1–5. [Google Scholar]
- Reichman, J. Handbook of Optical Filters for Flourescence and Microscopy, 2nd ed.; Chroma Technology Corp.: Bellows Falls, VT, USA, 2017; pp. 8–13. Available online: www.chroma.com (accessed on 18 September 2018).
- Naumann, H.; Schröder, G.; Löffler-Mang, M. Handbuch Bauelemente der Optik, 7th ed.; Carl Hanser Verlag: Munich, Germany, 2014; pp. 214–216. ISBN 978-3-446-42625-2. [Google Scholar]
- Datasheet Hoya B440 Blue Filter; Hoya Candeo Optronics Corporation: Saitama, Japan, 2014; pp. 1–2. Available online: https://www.galvoptics.co.uk/optical-components/optical-filters/hoya-bandpass-filters/ (accessed on 14 September 2018).
- Macleod, H.A. Thin Film-Optical Filters, 3rd ed.; Institute of Physics Publishing: Bristol, UK, 2001; pp. 257–345. ISBN 978-0750306881. [Google Scholar]
- Thorlabs FBH 450-10 Bandpass Filter. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1860&pn=FBH450-10#1978 (accessed on 14 September 2018).
- Thorlabs FB450-40 Bandpass Filter. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001&pn=FB450-40#5413 (accessed on 14 September 2018).
- Datasheet Semrock 457-50 Bandpass Filter. Available online: www.semrock.com (accessed on 15 September 2018).
- Menna, F.; Nocerino, E.; Fassi, F.; Remondino, F. Geometric and optic characterization of a hemispherical dome port for underwater photogrammetry. Sensors 2016, 16, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Influence Factor | |||
---|---|---|---|
temperature gradient | +0.033 | nm/K | |
current gradient | −0.002 | nm/mA | (valid for = 500 to 1000 mA) |
binning group width | 4 | nm | (3 groups available) |
Part from Mean | Measured Curve | Gaussian Approx. | Logistic Power Peak Approx. |
---|---|---|---|
full | 100% | 100% | 100% |
150 nm | 100 nm | 120 nm | |
0.05 | 96.6% | 98.5% | 97.3% |
59 nm | 43.6 nm | 55.2 nm | |
0.1 | 93.6% | 96.9% | 94.6% |
48.5 nm | 38.4 nm | 45.6 nm | |
0.2 | 87.4% | 92.7% | 88.9% |
37.5 nm | 32 nm | 36 nm | |
0.5 | 66.1% | 76.1% | 66.0% |
(FWHM) | 21 nm | 21 nm | 20 nm |
AOI | Colored Glass | Thin Film | Thin Film | Thin Film |
---|---|---|---|---|
Hoya | Thorlabs | Thorlabs | Semrock | |
B440 | FBH450-10 | FB450-40 | 457-50 | |
0 | 42.0% | 29.1% | 77.8% | 93.6% |
−3.77 dB | −5.36 dB | −1.09 dB | −0.29 dB | |
15 | 41.5% | 21.5% | 64.1% | 92.7% |
−3.82 dB | −6.68 dB | −1.93 dB | −0.33 dB | |
30 | 40.3% | 7.5% | 31.7% | 75.4% |
−3.95 dB | −11.25 dB | −4.99 dB | −1.20 dB | |
45 | 37.5% | 0.8% | 6.0% | 22.6% |
−4.26 dB | −20.97 dB | −12.22 dB | −6.46 dB |
Water Type IB | Depth | ||||||
Filter | 2 m | 5 m | 10 m | 20 m | 50 m | 100 m | 200 m |
B440 | −8.53 dB | −7.75 dB | −7.14 dB | −6.54 dB | −5.74 dB | −5.31 dB | −5.23 dB |
FBH450-10 | −14.21 dB | −13.38 dB | n.a. | −12.98 dB | −12.11 dB | −11.76 dB | −12.09 dB |
FB450-40 | −10.05 dB | −8.22 dB | n.a. | −8.55 dB | −7.61 dB | −7.15 dB | −7.29 dB |
457-50 | −6.87 dB | −7.05 dB | n.a. | −6.40 dB | −5.40 dB | −4.82 dB | −4.64 dB |
water type III | Depth | ||||||
filter | 2 m | 5 m | 10 m | 20 m | 50 m | 100 m | |
B440 | −8.47 dB | −7.85 dB | −7.47 dB | −7.28 dB | −6.22 dB | −6.58 dB | |
FBH450-10 | −14.90 dB | −14.31 dB | −13.99 dB | −13.99 dB | −12.92 dB | −14.57 dB | |
FB450-40 | −10.62 dB | −9.96 dB | −9.56 dB | −9.45 dB | −8.40 dB | −9.51 dB | |
457-50 | −8.47 dB | −7.77 dB | −7.31 dB | −7.03 dB | −5.88 dB | −6.38 dB | |
water type 3C | Depth | ||||||
filter | 2 m | 5 m | 10 m | 20 m | 50 m | ||
B440 | −9.51 dB | −10.1 dB | −11.40 dB | −13.70 dB | −13.99 dB | ||
FBH450-10 | −15.89 dB | −16.83 dB | −19.07 dB | −22.79 dB | −24.25 dB | ||
FB450-40 | −11.64 dB | −12.49 dB | −14.73 dB | −19.43 dB | −22.64 dB | ||
457-50 | −9.36 dB | −9.92 dB | −11.56 dB | −14.98 dB | −16.30 dB |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sticklus, J.; Hieronymi, M.; Hoeher, P.A. Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications. Sensors 2018, 18, 3710. https://doi.org/10.3390/s18113710
Sticklus J, Hieronymi M, Hoeher PA. Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications. Sensors. 2018; 18(11):3710. https://doi.org/10.3390/s18113710
Chicago/Turabian StyleSticklus, Jan, Martin Hieronymi, and Peter Adam Hoeher. 2018. "Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications" Sensors 18, no. 11: 3710. https://doi.org/10.3390/s18113710
APA StyleSticklus, J., Hieronymi, M., & Hoeher, P. A. (2018). Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications. Sensors, 18(11), 3710. https://doi.org/10.3390/s18113710