Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor
Abstract
:1. Introduction
2. High-Performance CSMN
2.1. Characteristics of the Tuned and Non-Tuned Coil Sensors
2.2. The Coil Sensor Nonlinear Distortion
2.3. Design of the Matching Network
- (1)
- The topology of the LC bandpass filter
- (2)
- The approximate function and the calculation of the parameters of the filter
- (3)
- Selection of the matching capacitor
3. Equivalent Circuit of the CSMN with Noise Sources
3.1. The Proposed CSMN
3.2. Optimization for Electrical Specification of the Preamplifier
4. Sensitivity of the CSMN
5. Experiment
5.1. Experiment for Suppressing the Signal Distortion
5.2. Experiment for the Sensitivity of the CSMN
5.3. Field Experiment
6. Conclusions and Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schirov, M.; Legchenko, A.; Creer, G. A new direct non-invasive groundwater detection technology for Australia. Explor. Geophys. 1991, 22, 333–338. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. Processing of surface proton magnetic resonance signals using non-linear fitting. J. Appl. Geophys. 1998, 39, 77–83. [Google Scholar] [CrossRef]
- Behroozmand, A.A.; Keating, K.; Auken, E. A review of the principles and applications of the NMR technique for near-surface characterization. Surv. Geophys. 2015, 36, 27–85. [Google Scholar] [CrossRef]
- Lubczynski, M.; Roy, J. Hydrogeological interpretation and potential of the new magnetic resonance sounding (MRS) method. J. Hydrol. 2003, 283, 19–40. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. A review of the basic principles for proton magnetic resonance sounding measurements. J. Appl. Geophys. 2002, 50, 3–19. [Google Scholar] [CrossRef]
- Guillen, A.; Legchenko, A. Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied to water resource characterization. J. Appl. Geophys. 2002, 50, 193–205. [Google Scholar] [CrossRef]
- Legchenko, A.; Baltassat, J.M.; Bobachev, A.; Martin, C.; Robain, H.; Vouillamoz, J.M. Magnetic resonance sounding applied to aquifer characterization. Groundwater 2004, 42, 363–373. [Google Scholar] [CrossRef]
- Lin, T.T.; Zhang, Y.; Wan, L.; Qu, Y.X.; Lin, J. A para-whole space model for underground magnetic resonance sounding studies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 264–271. [Google Scholar] [CrossRef]
- Hertrich, M. Imaging of groundwater with nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 53, 227–248. [Google Scholar] [CrossRef]
- Girard, J.F.; Boucher, M.; Legchenko, A.; Baltassat, J.M. 2D magnetic resonance tomography applied to karstic conduit imaging. J. Appl. Geophys. 2007, 63, 103–116. [Google Scholar] [CrossRef]
- Legchenko, A.; Descloitres, M.; Vincent, C.; Guyard, H.; Garambois, S.; Chalikakis, K.; Ezersky, M. Three-dimensional magnetic resonance imaging for groundwater. New J. Phys. 2011, 13, 025022. [Google Scholar] [CrossRef] [Green Version]
- Greben, J.M.; Meyer, R.; Kimmie, Z. The underground application of magnetic resonance soundings. J. Appl. Geophys. 2011, 75, 220–226. [Google Scholar] [CrossRef]
- Estola, K.P.; Malmivuo, J. Air-core induction-coil magnetometer design. J. Phys. E Sci. Instrum. 1982, 15, 1110. [Google Scholar] [CrossRef]
- Zakaria, Z.; Rahim, R.A.; Mansor, M.S.B.; Yaacob, S.; Ayob, N.M.N.; Muji, S.Z.M.; Aman, S.M.K.S. Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography. Sensors 2012, 12, 7126–7156. [Google Scholar] [CrossRef] [PubMed]
- Matlashov, A.N.; Schultz, L.J.; Espy, M.A.; Kraus, R.H.; Savukov, I.M.; Volegov, P.L.; Wurden, C.J. SQUIDs vs. induction coils for ultra-low field nuclear magnetic resonance: Experimental and simulation comparison. IEEE Trans. Appl. Supercond. 2011, 21, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Guridi, R.; Vogel, M.W.; Reutens, D.C.; Vegh, V. Towards ultimate low frequency air-core magnetometer sensitivity. Sci. Rep. 2017, 7, 2269. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, K. Optimal design of an air-core induction magnetometer for detecting low-frequency fields of less than 1 pT. J. Magn. Soc. Jpn. 2006, 30, 439–442. [Google Scholar] [CrossRef]
- Lin, T.T.; Zhang, Y.; Lee, Y.H. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range. Rev. Sci. Instrum. 2014, 85, 114708. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Du, G.; Zhang, J.; Yi, X.; Jiang, C.; Lin, T. Development of a rigid one-meter-side and cooled coil sensor at 77 K for magnetic resonance sounding to detect subsurface water sources. Sensors 2017, 17, 1362. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.O. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. J. Appl. Geophys. 2008, 66, 140–150. [Google Scholar] [CrossRef]
- Dalgaard, E.; Auken, E.; Larsen, J. Adaptive noise cancelling of multichannel magnetic resonance sounding signals. Geophys. J. Int. 2012, 191, 88–100. [Google Scholar] [CrossRef]
- Jiang, C.; Lin, J.; Duan, Q.; Sun, S.; Tian, B. Statistical stacking and adaptive notch filter to remove high-level electromagnetic noise from MRS measurements. Near Surface Geophys. 2011, 9, 459–468. [Google Scholar] [CrossRef]
- Lin, T.T.; Chen, W.Q.; Du, W.; Zhao, J. Signal acquisition module design for multi-channel surface magnetic resonance sounding system. Rev. Sci. Instrum. 2015, 86, 114702. [Google Scholar] [CrossRef] [PubMed]
- Legchenko, A.; Valla, P. Removal of power-line harmonics from proton magnetic resonance measurements. J. Appl. Geophys. 2003, 53, 103–120. [Google Scholar] [CrossRef]
- Trushkin, D.; Shushakov, O.; Legchenko, A. The potential of a noise-reducing antenna for surface NMR groundwater surveys in the Earth’s magnetic field. Geophys. Prospect. 1994, 42, 855–862. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Y.; Yang, Y.J.; Sun, Y.; Lin, T.T. Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection. Rev. Sci. Instrum. 2017, 88, 064702. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, S.; Wang, H.; He, M.; Liu, X.; Qiu, Y.; Zhu, J. An improved high-sensitivity airborne transient electromagnetic sensor for deep penetration. Sensors 2017, 17, 169. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Lee, S.W.; Lee, Y.H.; Oh, J.S. A miniaturized magnetic induction sensor using geomagnetism for turn count of small-caliber ammunition. Sensors 2006, 6, 712–726. [Google Scholar] [CrossRef]
- García, A.; Morón, C.; Tremps, E. Magnetic sensor for building structural vibrations. Sensors 2014, 14, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lin, T.T.; Ji, Y.; Chen, Z.; Zhao, Y.; Li, H. Non-invasive characterization of water-bearing strata using a combination of geophysical techniques. J. Appl. Geophys. 2013, 91, 49–65. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef]
- Werle, P.O.; Mücke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B Lasers Opt. 1993, 57, 131–139. [Google Scholar] [CrossRef]
π | Bessel | Butterworth | Chebyshev |
---|---|---|---|
K1 | 0.337 | 1.000 | 1.633 |
K2 | 0.971 | 2.000 | 1.436 |
K3 | 2.203 | 1.000 | 1.633 |
Parameters | L | Rs | C | L1 | C1 | L2 | C2 | L3 | C3 | RL | R1 | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 0.8 | 4 | 5.8 | 2.46 | 2.12 | 10.6 | 0.491 | 2.46 | 2.12 | 50 | 1 | 100 |
Noise Amplitude | Traditional System | New System | ||
---|---|---|---|---|
E0 (nV) | T2* (ms) | E0 (nV) | T2* (ms) | |
10 mV | 245.2 | 155.6 | 249.3 | 152.6 |
150 mV | 243.8 | 154.3 | 248.5 | 153.8 |
200 mV | * | * | 246.9 | 155.2 |
300 mV | * | * | 246.3 | 153.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Teng, F.; Li, S.; Wan, L.; Lin, T. Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor. Sensors 2017, 17, 2463. https://doi.org/10.3390/s17112463
Zhang Y, Teng F, Li S, Wan L, Lin T. Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor. Sensors. 2017; 17(11):2463. https://doi.org/10.3390/s17112463
Chicago/Turabian StyleZhang, Yang, Fei Teng, Suhang Li, Ling Wan, and Tingting Lin. 2017. "Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor" Sensors 17, no. 11: 2463. https://doi.org/10.3390/s17112463
APA StyleZhang, Y., Teng, F., Li, S., Wan, L., & Lin, T. (2017). Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor. Sensors, 17(11), 2463. https://doi.org/10.3390/s17112463