Registration of Feature-Poor 3D Measurements from Fringe Projection
Abstract
:1. Introduction
2. Measurement and Registration of 3D Data
2.1. 3D Measurement for Surface Quality Inspection
2.1.1. Finding Corresponding Image Points
2.1.2. Camera Calibration
2.2. Registration of 3D Data
3. Texture-Based Registration Algorithm
- (a)
- Camera calibration
- (b)
- Camera image (blank projection)
- (c)
- 3D point cloud
3.1. Texture Image
3.2. 2D Keypoints and Matching
3.3. Estimation of 3D Parameters
4. Experimental Results and Discussion
5. Conclusions
Acknowledgments
- The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this International Research Group (IRG14-28).
- This work is part of a project funded by the German Federal Ministry for Economic Affairs and Energy (No. KF-3172302-WM4).
Author Contributions
Conflicts of Interest
Appendix
Camera Calibration Model
- External Calibration:
- 2D Projection:
- Radial Distortion:
References
- Denkena, B.; Berg, F.; Acker, W. Surface Inspection System for Large Sheet Metal Parts. Adv. Mater. Res. 2005, 6–8, 559–564. [Google Scholar] [CrossRef]
- Molleda, J.; Usamentiaga, R.; García, D.F.; Bulnes, F.G.; Espina, A.; Dieye, B.; Smith, L.N. An improved 3D imaging system for dimensional quality inspection of rolled products in the metal industry. Comput. Ind. 2013, 64, 1186–1200. [Google Scholar] [CrossRef]
- De la Fuente López, E.; Trespaderne, F.M. Inspection of stamped sheet metal car parts using a multiresolution image fusion technique. Comput. Vis. Syste. 2009, 5815, 345–353. [Google Scholar]
- Von Enzberg, S.; Al-Hamadi, A. A defect recognition system for automated inspection of non-rigid surfaces. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1812–1816.
- Newman, T.S.; Jain, A.K. A survey of automated visual inspection. Comput. Vis. Image Underst. 1995, 61, 231–262. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Montreal, QC, Canada, 28 May–1 June 2001; pp. 145–152.
- Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 2724–2729.
- Ribo, M.; Brandner, M. State of the art on vision-based structured light systems for 3D measurements. In Proceedings of the International Workshop on Robotic Sensors: Robotic and Sensor Environments, Ottawa, ON, Canada, 30 September–1 October 2005; pp. 2–6.
- Salvi, J.; Armangué, X.; Batlle, J. A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognit. 2002, 35, 1617–1635. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer-Verlag: London, UK, 2010. [Google Scholar]
- Salvi, J.; Fern, S.; Pribanic, T.; Llado, X.; Fernandez, S. A state of the art in structured light patterns for surface profilometry. Pattern Recognit. 2010, 43, 2666–2680. [Google Scholar] [CrossRef]
- Lilienblum, E.; Al-Hamadi, A. A Structured Light Approach for 3-D Surface Reconstruction with a Stereo Line-Scan System. IEEE Trans. Instrum. Meas. 2015, 64, 1266–1274. [Google Scholar] [CrossRef]
- Luhmann, T. Close range photogrammetry for industrial applications. ISPRS J. Photogramm. Remote Sens. 2010, 65, 558–569. [Google Scholar] [CrossRef]
- Tsai, R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Wei, G.Q.; De Ma, S. Implicit and explicit camera calibration: Theory and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 469–480. [Google Scholar]
- Zollner, H.; Sablatnig, R. Comparison of methods for geometric camera calibration using planar calibration targets. In Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition, Hagenberg, Austria, 17–18 June 2004; pp. 237–244.
- Goshtasby, A.A. Three-dimensional model construction from multiview range images: survey with new results. Pattern Recognit. 1998, 31, 1705–1714. [Google Scholar] [CrossRef]
- Williams, J.; Bennamoun, M. Simultaneous Registration of Multiple Corresponding Point Sets. Comput. Vis. Image Underst. 2001, 81, 117–142. [Google Scholar] [CrossRef]
- Gelfand, N.; Mitra, N.J.; Guibas, L.J.; Pottmann, H. Robust Global Registration. In Proceedings of the Eurographics Symposium on Geometry Processing, Vienna, Austria, 4–6 July 2005; pp. 1–10.
- Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 27 September–4 October 2009; pp. 689–696.
- Besl, P.J.; McKay, N.D. A Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Potmesil, M. Generating Models of Solid Objects by Matching 3D Surface Segments. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI), Karlsruhe, Germany, 8–12 August 1983; pp. 1089–1093.
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of Robotics: Science and Systems V, Seattle, WA, USA, 28 June–1 July 2009; pp. 161–168.
- Shi, Q.; Xi, N.; Chen, Y.; Sheng, W. Registration of point clouds for 3D shape inspection. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 235–240.
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Bae, K.H.; Lichti, D.D. A method for automated registration of unorganised point clouds. ISPRS J. Photogramm. Remote Sens. 2008, 63, 36–54. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef]
- Korn, M.; Holzkothen, M.; Pauli, J. Color Supported Generalized-ICP. In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; pp. 592–599.
- Johnson, A.E.; Kang, S.B. Registration and integration of textured 3D data. Image Vis. Comput. 1999, 17, 135–147. [Google Scholar] [CrossRef]
- Godin, G.; Laurendeau, D.; Bergevin, R. A method for the registration of attributed range images. In Proceedings 3rd International Conference on 3-D Digital Imaging and Modeling, Montreal, QC, Canada, 28 May–1 June 2001; pp. 179–186.
- Wendt, A.; Heipke, C. Simultaneous orientation of brightness, range and intensity images. In Proceedings of the ISPRS Comission V Symposium ’Image Engineering and Vision Metrology, Dresden, Germany, 25–27 September 2006; pp. 315–322.
- Aschwanden, P.F. Experimenteller Vergleich von Korrelationskriterien in der Bildanalyse. Ph.D. Thesis, ETH Zürich, Zurich, Austria, 1993. [Google Scholar]
- Wöhler, C. 3D computer vision: Efficient methods and applications; Springer-Verlag: Longon, UK, 2012. [Google Scholar]
- Kolingerová, I. 3D-line clipping algorithms — A comparative study. Visual Comput. 1994, 11, 96–104. [Google Scholar] [CrossRef]
Parameter | Camera A | Camera B | ||||||
---|---|---|---|---|---|---|---|---|
[mm] | (266.4, | 56.7, | 829.2) | (−271.3, | 57.0, | 832.6) | ||
[rad] | (−0.079, | 0.311, | 0.054) | (−0.077, | −0.320, | −0.053) | ||
image size | [pixel] | 1388 × 1038 | 1388 × 1038 | |||||
[pixel] | (695.7, | 494.1) | (678.6, | 503.7) | ||||
c | [pixel] | 2725.8 | 2721.0 | |||||
1.000 | 1.000 | |||||||
[mm] | ||||||||
[mm] |
# Point Pairs | Overlap Error | ||||
---|---|---|---|---|---|
Meas. | Matches | Consensus | Min [mm] | Max [mm] | MSE [mm] |
1, 2 | 344 | 82 | −0.457 | 0.333 | 0.105 |
2, 3 | 194 | 23 | −0.549 | 0.701 | 0.096 |
3, 4 | 152 | 26 | −0.599 | 0.417 | 0.139 |
4, 5 | 234 | 25 | −0.451 | 0.457 | 0.142 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Enzberg, S.; Al-Hamadi, A.; Ghoneim, A. Registration of Feature-Poor 3D Measurements from Fringe Projection. Sensors 2016, 16, 283. https://doi.org/10.3390/s16030283
Von Enzberg S, Al-Hamadi A, Ghoneim A. Registration of Feature-Poor 3D Measurements from Fringe Projection. Sensors. 2016; 16(3):283. https://doi.org/10.3390/s16030283
Chicago/Turabian StyleVon Enzberg, Sebastian, Ayoub Al-Hamadi, and Ahmed Ghoneim. 2016. "Registration of Feature-Poor 3D Measurements from Fringe Projection" Sensors 16, no. 3: 283. https://doi.org/10.3390/s16030283
APA StyleVon Enzberg, S., Al-Hamadi, A., & Ghoneim, A. (2016). Registration of Feature-Poor 3D Measurements from Fringe Projection. Sensors, 16(3), 283. https://doi.org/10.3390/s16030283