Biodiversity Loss and the Ecological Footprint of Trade
Abstract
:1. Introduction
2. Methods and Materials
2.1. What Do Biocapacity and the Ecological Footprint Measure?
2.1.1. How Are the Ecological Footprint and Biocapacity Measured?
2.1.2. The National Footprint Accounts: A Key Implementation of Ecological Footprint and Biocapacity Accounting
3. Results and Discussion
3.1. Global Biocapacity Flows
3.1.1. Net Importers and Exporters Show the Flows of Pressure in International Trade
3.1.2. Trade and the Carbon Component of the Ecological Footprint
3.1.3. Trade and the Biomass Ecological Footprint
3.2. Component Biocapacity Flows
3.2.1. Cropland
3.2.2. Fishing Grounds
3.2.3. Forest Land
3.2.4. Grazing Land
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mace, G.M.; Reyers, B.; Alkemade, R.; Biggs, R.; Chapin, F.S.; Cornell, S.E.; Díaz, S.; Jennings, S.; Leadley, P.; Mumby, P.J.; et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Chang. 2014, 28, 289–297. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, K.E.; Ragnarsdóttir, K.V.; Roberts, D.; de Vogli, R.; Wilkinson, R. Development: Time to leave GDP behind. Nature 2014, 505, 283–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, H.E. Toward some operational principles of sustainable development. Ecol. Econ. 1990, 2, 1–6. [Google Scholar] [CrossRef]
- Galli, A.; Wackernagel, M.; Iha, K.; Lazarus, E. Ecological Footprint: Implications for biodiversity. Biol. Conserv. 2014, 173, 121–132. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Bolt, J.; van Zanden, J.L. The First Update of the Maddison Project; Re-estimating Growth before 1820; Maddison Project: Groningen, The Netherlands, 2013. [Google Scholar]
- Malik, K.; United Nations Development Programme. Human Development Report 2013: The Rise of the South : Human Progress in a Diverse World; United Nations Development Programme: New York, NY, USA, 2013. [Google Scholar]
- United Nations Environment Programme (UNEP). Global Environmental Outlook GEO 5: Environment for the Future We Want; United Nations Environment Program: Nairobi, Kenya, 2012. [Google Scholar]
- Tittensor, D.P.; Walpole, M.; Hill, S.L.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, S.H.M.; Leadley, P.W.; Regan, E.C.; Alkemade, R.; et al. A mid-term analysis of progress toward international biodiversity targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human Appropriation of the Products of Photosyntheseis. Bioscience 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.-H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.-H.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in Earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H. The global socioeconomic energetic metabolism as a sustainability problem. Energy 2006, 31, 87–99. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.C.; Bennett, E.; Berhe, A.A.; Cassman, K.; DeFries, R.S.; Dietz, T.; Dobermann, A.; Dobson, A.; Janetos, A.; Levy, M.A.; et al. Anthropogenic Drivers of Ecosystem Change: An Overview. Ecol. Sci. 2006, 11, 29. [Google Scholar]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A. International trade drives biodiversity threats in developing nations. Nature 2012, 486, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.; Green, R.E.; Ricketts, T.; Lamoreux, J.; Jenkins, M.; Kapos, V.; Randers, J. The Living Planet Index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Weinzettel, J.; Hertwich, E.G.; Peters, G.P.; Steen-Olsen, K.; Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Chang. 2013, 23, 433–438. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. In Global Biodiversity Outlook 4; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2014.
- Secretariat of the Convention on Biological Diversity. In Handbook of the Convention on Biological Diversity; Earthscan Publications: London, UK; Sterling, VA, USA, 2001.
- Bastianoni, S.; Niccolucci, V.; Cranston, G.; Neri, E.; Galli, A.; Wackernagel, M. Sustainable Development: Ecological Footprint in Accounting. In Encyclopedia of Environmental Management; Taylor & Francis: Florence, KY, USA, 2013; pp. 2467–2481. [Google Scholar]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Galli, A. On the rationale and policy usefulness of Ecological Footprint Accounting: The case of Morocco. Environ. Sci. Policy 2015, 48, 210–224. [Google Scholar] [CrossRef]
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. 2002, 99, 9266–9271. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity (CBD); United Nations Environmental Programme (UNEP). Report of the Eleventh Meeting; CBD: Hyderabad, India, 2012; p. 288. [Google Scholar]
- Vačkář, D. Ecological Footprint, environmental performance and biodiversity: A cross-national comparison. Ecol. Indic. 2012, 16, 40–46. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. 2011, 108, 8903–8908. [Google Scholar] [CrossRef] [PubMed]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Monfreda, C.; Wackernagel, M.; Deumling, D. Establishing national natural capital accounts based on detailed Ecological Footprint and biological capacity assessments. Land Use Policy 2004, 21, 231–246. [Google Scholar] [CrossRef]
- Galli, A.; Kitzes, J.; Wermer, P.; Wackernagel, M.; Niccolucci, V.; Tiezzi, E. An Exploration of the Mathematics behind the Ecological Footprint. In Ecodynamics: The Prigogine Legacy; Brebbia, C.A., Ed.; WIT Press: Southampton, UK, 2012; Volume 1, pp. 249–256. [Google Scholar]
- Aguiar, A.; McDougall, R.; Narayanan, B. Global Trade, Assistance, and Production: The GTAP 8 Data Base. Availabile online: http://www.gtap.agecon.purdue.edu/databases/v8/v8_doco.asp (accessed on 6 May 2014).
- Ewing, B.R.; Hawkins, T.R.; Wiedmann, T.O.; Galli, A.; Ercin, A.E.; Weinzettel, J.; Steen-Olsen, K. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 2012, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kastner, T.; Schaffartzik, A.; Eisenmenger, N.; Erb, K.-H.; Haberl, H.; Krausmann, F. Cropland area embodied in international trade: Contradictory results from different approaches. Ecol. Econ. 2014, 104, 140–144. [Google Scholar] [CrossRef]
- Catton, W.R. Overshoot: The Ecological Basis of Revolutionary Change; University of Illinois Press: Urbana, IL, USA, 1982. [Google Scholar]
- Goldfinger, S.; Poblete, P. The Eecological Wealth of Nations; Global Footprint Network: Oakland, CA, USA, 2010. [Google Scholar]
- Vitousek, P.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005; p. 100.
- Moore, D.; Cranston, G.; Reed, A.; Galli, A. Projecting future human demand on the Earth’s regenerative capacity. Ecol. Indic. 2012, 16, 3–10. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Harvesting the Biosphere: The Human Impact. Popul. Dev. Rev. 2011, 37, 613–636. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead. Proc. Natl. Acad. Sci. 2008, 105, 14245–14250. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H. (Ted); et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. BioScience 2001, 51, 723. [Google Scholar] [CrossRef]
- Wuethrich, B. How Climate Change Alters Rhythms of the Wild. Science 2000, 287, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (Ed.) Climate Change 2013—The Physical Science Basis. In Proceedings of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stockholm, Sweden, 23–26 September 2013; Cambridge University Press: Cambridge, UK, 2014.
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://data.fao.org (accessed on 1 June 2015).
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Matson, P.A. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; O’Leary, J.; Ranelletti, M.; et al. An index to assess the health and benefits of the global ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swartz, W.; Sala, E.; Tracey, S.; Watson, R.; Pauly, D. The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present). PLoS ONE 2010, 5, e15143. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. State of World Fisheries and Aquaculture 2014; FAO: Rome, Italy, 2014. [Google Scholar]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and Solutions for the World’s Unassessed Fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Data and Visualization. Available online: http://www.seaaroundus.org/data/ (accessed on 17 March 2015).
- Christensen, V.; Coll, M.; Piroddi, C.; Steenbeek, J.; Buszowski, J.; Pauly, D. A century of fish biomass decline in the ocean. Mar. Ecol. Prog. Ser. 2014, 512, 155–166. [Google Scholar] [CrossRef]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Bradshaw, C.J.; Sodhi, N.S.; Brook, B.W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 2009, 7, 79–87. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Mackey, B.; DellaSala, D.A.; Kormos, C.; Lindenmayer, D.; Kumpel, N.; Zimmerman, B.; Hugh, S.; Young, V.; Foley, S.; Arsenis, K.; et al. Policy Options for the World’s Primary Forests in Multilateral Environmental Agreements: Policy options for world’s primary forests. Conserv. Lett. 2014. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, B.L.; Kormos, C.F. Prospects for Sustainable Logging in Tropical Forests. BioScience 2012, 62, 479–487. [Google Scholar]
- Finer, M.; Jenkins, C.N.; Sky, M.A.B.; Pine, J. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon. Sci. Rep. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.; MacFaul, L. Royal Institute of International Affairs. In Illegal Logging and Related Trade: Indicators of the Global Response; Chatham House: London, UK, 2010. [Google Scholar]
- Tacconi, L. Illegal Logging: Law Enforcement, Livelihoods and the Timber Trade. Earthscan: London, UK, 2012. [Google Scholar]
- Plantureux, S.; Peeters, A.; McCracken, D.I. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agron. Res. 2005, 3, 153–164. [Google Scholar]
- Marriott, C.A.; Fothergill, M.; Jeangros, B.; Scotton, M.; Louault, F. Long-term impacts of extensification of grassland management on biodiversity and productivity in upland areas. A review. Agronomie 2004, 24, 447–462. [Google Scholar] [CrossRef]
- Van Wieren, S.E. Effects of large herbivores upon the animal community. In Grazing and Conservation Management; WallisDeVries, M.F., van Wieren, S.E., Bakker, J.P., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1998; pp. 185–214. [Google Scholar]
- Reid, R.S.; Bedelian, C.; Said, M.Y.; Kruska, R.L.; Mauricio, R.M.; Castel, V.; Olson, J.; Thornton, P.K. Global livestock impacts on biodiversity. Livest. Chang. Landsc. 2009, 1, 111–138. [Google Scholar]
- Nepstad, D.C.; Stickler, C.M.; Filho, B.S.; Merry, F. Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, N.I.; Grau, H.R.; Gutiérrez Angonese, J. Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multi-decadal analysis. Glob. Environ. Chang. 2013, 23, 1605–1614. [Google Scholar] [CrossRef]
- Alkemade, R.; Reid, R.S.; van den Berg, M.; de Leeuw, J.; Jeuken, M. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc. Natl. Acad. Sci. 2013, 110, 20900–20905. [Google Scholar] [CrossRef] [PubMed]
- Caro, D.; LoPresti, A.; Davis, S.J.; Bastianoni, S.; Caldeira, K. CH4 and N2O emissions embodied in international trade of meat. Environ. Res. Lett. 2014, 9, 114005. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarus, E.; Lin, D.; Martindill, J.; Hardiman, J.; Pitney, L.; Galli, A. Biodiversity Loss and the Ecological Footprint of Trade. Diversity 2015, 7, 170-191. https://doi.org/10.3390/d7020170
Lazarus E, Lin D, Martindill J, Hardiman J, Pitney L, Galli A. Biodiversity Loss and the Ecological Footprint of Trade. Diversity. 2015; 7(2):170-191. https://doi.org/10.3390/d7020170
Chicago/Turabian StyleLazarus, Elias, David Lin, Jon Martindill, Jeanette Hardiman, Louisa Pitney, and Alessandro Galli. 2015. "Biodiversity Loss and the Ecological Footprint of Trade" Diversity 7, no. 2: 170-191. https://doi.org/10.3390/d7020170
APA StyleLazarus, E., Lin, D., Martindill, J., Hardiman, J., Pitney, L., & Galli, A. (2015). Biodiversity Loss and the Ecological Footprint of Trade. Diversity, 7(2), 170-191. https://doi.org/10.3390/d7020170