The Historical Ecology of Human and Wild Primate Malarias in the New World
Abstract
:1. Introduction
2. Human and Wild Primate Malarias in South America
Plasmodium brasilianum | ||
---|---|---|
Primate Species | Common Name | References |
Alouatta belzebul | Red-handed howler | 5, 48vi, 80vi |
Alouatta caraya | Black howler | 48, 79, 80 |
Alouatta guariba | Brown howler | 48, 79-81 |
Alouatta palliata | Mantled howler | 80-82 |
Alouatta seniculus | Red howler | 5, 8, 11, 80, 81, 83 |
Alouatta pigrai | Guatemalan black howler | 80-82, 84 |
Alouatta spp. | Howler | 81, 85 |
Aotus vociferans | Spix's night monkey | 80, 86 |
Ateles belzebuth | Long-haired spider monkey | 80 |
Ateles fusciceps | Brown-headed spider monkey | 79-82, 84 |
Ateles geoffroyi | Black-handed spider monkey | 80-82, 84 |
Ateles paniscus | Black spider monkey | 5, 48, 80-82, 87 |
Ateles spp. | Spider monkey | 85 |
Brachyteles arachnoides | Woolly spider monkey, Muriqui | 48, 80, 81 |
Cacajao calvusii | Bald uakari | 5, 21, 48, 82, 85, 88 |
Callicebus brunneus | Brown titi | 5, 80 |
Callicebus moloch | Dusky titi | 5, 80, 81 |
Callicebus moloch complex | Titi monkey | 5 |
Callicebus ornatus | Ornate titi | 80 |
Callicebus torquatus | Collared titi | 5, 80, 81 |
Cebus albifrons | White-fronted capuchin | 5, 48, 81, 82 |
Cebus apella | Tufted capuchin | 5, 48, 80-82, 87 |
Cebus capucinus | White-faced capuchin | 80-82, 84 |
Cebus spp. | Capuchin | 85 |
Chiropotes albinasus | White-nosed saki | 5, 48, 80 |
Chiropotes chiropotes | Red-backed bearded saki | 48, 79 |
Chiropotes satanas | Black-bearded saki | 5, 48, 80 |
Lagothrix cana | Peruvian woolly monkey | 48, 81 |
Lagothrix poeppigiiiii | Woolly monkey | 48, 81, 82, 87 |
Lagothrix lagotrichaiv | Common woolly monkey | 5, 48, 80-82 |
Lagothrix sp. | Woolly monkey | 85 |
Pithecia irrorata | Bald-faced saki, Tapajós saki | 5, 48, 80 |
Pithecia monachus | Monk saki | 48, 80 |
Pithecia pithecia | White-faced saki | 5, 8, 11, 48, 80, 83 |
Saguinus geoffroyi | Panamanian tamarin | 80, 89 |
Saguinus midas | Red-handed tamarin | 5, 8, 11, 80, 83 |
Saimiri boliviensis | Bolivian squirrel monkey | 5, 48, 80-82, 87 |
Saimiri sciureus | Common squirrel monkey | 5, 48, 80-82, 87 |
Saimiri ustus | Bare-eared squirrel monkey | 5, 48, 80 |
Saimiri sp. | Squirrel monkey | 85, 90 |
Plasmodium simium | ||
Alouatta caraya | Black howler | 79vii |
Alouatta guaribav | Brown howler | 21, 79-82, 85, 88, 90-91 |
Brachyteles arachnoides | Woolly spider monkey, Muriqui | 21, 80, 81 |
3. Out of Africa4: Introduced Malaria
4. Out of Amazonia: Pre-Columbian Endemic Malaria in the New World
5. Out of Asia: A Closer Look at Plasmodium vivax and Plasmodium simium
6. Plasmodium malariae and Plasmodium brasilianum
7. Conclusion
Acknowledgments
Notes
- In 1960, three researchers at a Memphis malarial research laboratory were naturally infected with a form of monkey malaria, P. cynomolgi [17,18]. Prior to this time, it had not been believed that it was possible for a human to contract wild primate malaria. This was followed by a series of studies among prisoners at the Atlanta Penitentiary in the 1960s and 1970s that involved experimental infections with various forms of monkey malaria that are documented in the Journal of Tropical Medicine and Hygiene [16].
- Because the number of nucleotides is limited to four (ACGT), it can be difficult to differentiate between nucleotides that represent common ancestry and mutations that are the result of independent evolution. See Cormier [16] for a more extensive review of the problem of long branch attraction in constructing phylogenies of primate plasmodia.
- Neutral polymorphisms or "silent mutations" are mutations that do not affect the amino acid sequence coded [100], and presumably are not under selective pressure.
- I am borrowing here from Carter’s [46] terminology contrasting these two views as “Out of Africa” versus “Out of Amazonia.”
- In North America, Caribbean Anolis lizards can be infected with Plasmodium floridense and P. azurophilum [153]. Garnham and Kuttler [154] have hypothesized the presence of Plasmodium odocoilei in the North America white-tailed deer (Odocoileus virginianus) originates in cervids who brought the plasmodium to the New World in Pliocene times across the Bering Land Bridge based on comparative phylogeny of plasmodia in Old World ungulates. If they are correct, it raises the possibility, however unlikely, of plasmodia parasites entering the New World with humans across the Bering Strait.
- Cinchona is a member of the Rubiaceae family and is not a single plant, but includes from 23-36 different species, depending on the botanical classification [125].
- It should be noted that these genetic relationships are still far from settled. A phylogenetic analysis conducted by Mu et al. [156] did not determine clear distinctions between Old World and New World forms of P. vivax or a closer connection of P. simium to Old World P. vivax. Nevertheless, Mu et al. found support for an Asian origin of P. vivax-like malarias, which were transmitted to New World humans and monkeys through a series of host transfers. However, even less is known about the basic biology and genomic diversity of P. vivax than P. falciparum [157].
- Alouatta caraya is more variable in the canopy strata utilized.
- However, differences in the vertical forest niches of monkeys and humans do not provide a completely satisfactory explanation; such ecological barriers do not explain why P. simium has not spread more widely among monkeys. Here, horizontal barriers may be more at play in the highly developed and fragmented Atlantic forest.
- More commonly spelled, Assurini.
References
- Livingstone, F.B. Anthropological implications of sickle cell gene distribution in West Africa. Am. Anthropol. 1958, 60, 533–562. [Google Scholar]
- Cormier, L.A. Animism, cannibalism and pet-keeping among the Guajá of Eastern Amazonia. Tipití. 2003, 1, 71–88. [Google Scholar]
- Cormier, L.A. A preliminary review of Neotropical primates in the subsistence and symbolism of indigenous lowland South American peoples. Ecol. and Environ. Anthropol. 2006, 2, 14–32. [Google Scholar]
- Coatney, G.R.; Collins, W.E; McWilson, W; Contacos, P.G. The Primate Malarias; U.S. Department of Health, Education, and Welfare: Bethesda, MD, USA, 1971. [Google Scholar]
- Davies, C.R.; Ayres, J.M.; Dye, C; Deane, L.M. Malarial infection rate of Amazonian primates increases with body weight and group size. Funct. Ecol. 1991, 5, 655–662. [Google Scholar] [CrossRef]
- De Arruda, M.; Nardin, E.H; Nussenzweig, R.S.; Cochrane, A.H. Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon Basin of Brazil. Am. J. Trop. Med. Hyg. 1989, 41, 379–385. [Google Scholar]
- Duarte, A.M.; Porto, M.A.L.; Curado, I.; Malafronte, R.S.; Hoffman, E.H.E.; de Oliveira, S.G.; da Silva, A.M.J.; Kloetzel, J.K.; Gomes, A.C. Widespread occurrence of antibodies against circumsporozoite protein and against blood forms of Plasmosidium vivax, P. falciparum, and P. malariae in Brazilian wild monkeys. J. Med. Primatol. 2006, 35, 87–96. [Google Scholar] [CrossRef]
- Fandeur, T.; Volney, B.; Peneau, C.; de Thoisy, B. Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology 2000, 120, 11–21. [Google Scholar] [CrossRef]
- Lal, A.A.; de la Cruz, V.F.; Collins, W.E.; Campbell, G.H.; Procell, P.M.; McCutchan, T.F. Circumsporozoite protein gene from Plasmodium brasilianum: Animal reservoirs for human parasites? J. Biol. Chem. 1988, 263, 5495–5498. [Google Scholar]
- Stewart, M.; Pendergast, V.; Rumfelt, S.; Pierberg, S.; Greenspan, L.; Glander, K.; Clarke, M. Parasites of wild howlers. Int. J. Primatol. 1998, 19, 493–512. [Google Scholar] [CrossRef]
- Volney, B.; Pouliquen, J.F.; de Thoisy, B.; Fandeur, T. A sero-epidemiological study of malaria in human and monkey populations in French Guiana. Acta Trop. 2002, 82, 11–23. [Google Scholar] [CrossRef]
- Collins, W.E. The owl monkey as a model for malaria. In Aotus: The Owl Monkey; Baer, J., Weller, R.E., Kakoma, I., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 217–244. [Google Scholar]
- Galland, G.G. Role of the squirrel monkey in parasitic disease research. Inst. Anim. Lab. Res. 2000, 41, 37–43. [Google Scholar] [CrossRef]
- Gilles, H.M. Historical outline. In Essential Malariology, Fourth Edition; Warell, D.A., Herbert, M., Gilles, H.M., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 1–7. [Google Scholar]
- Sibal, L.R.; Samson, K.J. Nonhuman primates: A critical role in current disease research. Inst. Anim. Lab. Res. 2001, 42, 74–84. [Google Scholar] [CrossRef]
- Cormier, L.A. The 10,000 Year Fever: The Historical Ecology of Human and Wild Primate Malarias; Left Coast Press: Walnut Creek, CA, USA, in press.
- Eyles, D.E.; Coatney, G.R.; Getz, M.E. Vivax-type malaria parasite of macaques transmissible to man. Science 1960, 131, 1812–1813. [Google Scholar]
- Schmidt, L.H.; Greenland, R.; Genther, C.S. The transmission of Plasmodium cynomolgi to man. Am. J. Trop. Med. Hyg. 1961, 10, 679–688. [Google Scholar]
- Bronner, U.; Divis, P.C.S.; Färnert, A.; Singh, B. Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malaria J. 2009, 8, 15. [Google Scholar] [CrossRef]
- Chin, W.; Contacos, P.G.; Coatney, G.R.; Kimball, H.R. A naturally acquired quotidian-type malaria in man transferable to monkeys. Science 1965, 149, 865. [Google Scholar]
- Coatney, G.R. The simian malarias: Zoonoses, anthroponoses or both? Am. J. Trop. Med. Hyg. 1971, 20, 795–803. [Google Scholar]
- Cox-Singh, J; Davis, T.M.; Lee, K.S.; Shamsul, S.S.; Matusop, A.; Ratnam, S.; Rahman, H.A.; Conway, D.J.; Singh, B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 2008, 46, 165–171. [Google Scholar] [CrossRef]
- Galinski, M.R.; Barnwell, J.W. Monkey malaria kills four humans. Trends Parasitol. 2009, 25, 200–209. [Google Scholar] [CrossRef]
- Jongwutiwes, S.; Putaportip, C.; Iwasaki, T.; Sata, T.; Kanbara, H. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg. Infect. Dis. 2004, 10, 2211–2213. [Google Scholar] [CrossRef]
- Kuo, M.C.; Chiang, T.Y.; Chan, C.W.; Tsai, W.S.; Ji, D.D. A case report of simian malaria, Plasmodium knowlesi, in a Taiwanese traveler from Palawan Island, the Philippines. Epidemiol Bull 2009, 25, 178–191. [Google Scholar]
- Lee, K.S.; Cox-Singh, J.; Brooke, G.; Matusop, A.; Singh, B. Plasmodium knowlesi from archival blood films: Further evidence that human infections are widely distributed and not newly emergent in Malaysian Borneo. Int. J. Parasitol. 2009, 39, 1125–1128. [Google Scholar] [CrossRef]
- Luchavez, J.; Espino, F.; Curameng, P. Human infections with Plasmodium knowlesi, the Philippines. Emerg. Infect. Dis. 2008, 14, 811–813. [Google Scholar] [CrossRef]
- Kantele, A.; Marti, H.; Felger, I.; Müller, D.; Jokiranta, T.S. Monkey malaria in a European traveler returning from Malaysia. Emerg. Infect. Dis. 2008, 14, 1434–1436. [Google Scholar] [CrossRef]
- Putaporntip, C.; Hongsrimuang, T.; Seethamchai, S.; Kobasa, T.; Limkittikul, K.; Cui, L.; Jongwutiwes, S. Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in humans in Thailand. J. Infect. Dis. 2009, 199, 1143–1150. [Google Scholar] [CrossRef]
- Singh, B.; Kim, S.L.; Matusop, A.; Radhakrishman, A.; Shamsul, S.S.; Cox-Singh, J.; Thomas, A.; Conway, D.J. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004, 363, 1017–1024. [Google Scholar] [CrossRef]
- van Hellemond, J.J.; Rutten, M.; Koelewijn, R.; Zeeman, A.M.; Verweij, J.J.; Wismans, P.J.; Kocken, C.K.; van Genderen, P.J.J. Human Plasmodium knowlesi infection detected by rapid diagnostic tests for malaria. Emerg. Infect. Dis. 2009, 15, 1478–1480. [Google Scholar] [CrossRef]
- Vythilingam, I.; NoorAzian, Y.M.; Huat, T.C.; Jiram, A.I.; Yusri, Y.M.; Azahari, A.H.; NorParina, I.; NoorRain, A.; LokmanHakim, S. Plasmodium knowlesi in humans, macaques, and mosquitoes in peninsular Malyasia. Parasite Vectors 2008, 1, 26. [Google Scholar] [CrossRef]
- Cook, N.D. Born to Die: Disease and New World Conquest, 1492−1650; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Denevan, W.M. The Native Population of the Americas in 1492; University of Wisconsin Press: Madison, WI, USA, 1992. [Google Scholar]
- Dobyns, H.F. Their Number Become Thinned: Native American Population Dynamics in Eastern North America; University of Tennessee Press: Knoxville, TN, USA, 1983. [Google Scholar]
- Dobyns, H.F. Disease transfer at contact. Annu. Rev. Anthropol. 1993, 22, 273–291. [Google Scholar] [CrossRef]
- Dunn, F.L. On the antiquity of malaria in the Western Hemisphere. Hum. Biol. 1965, 37, 38–43. [Google Scholar]
- McNeill, W.H. Plagues and People; Anchor/Doubleday: Garden City, NY, USA, 1976. [Google Scholar]
- Wirsing, R.L. The health of traditional societies and the effects of acculturation. Curr. Anthropol. 1985, 26, 303–322. [Google Scholar]
- Jamarillo-Arrango, J. The Conquest of Malaria; Heineman Medical Books: London, UK, 1950. [Google Scholar]
- Wood, C.S. New evidence for a late introduction of malaria into the New World. Curr. Anthropol. 1975, 16, 93–104. [Google Scholar]
- Ayala, F.J.; Escalante, A.A.; Rich, S.M. Evolution of plasmodium and the recent origin of the Old World populations of Plasmodium falciparum. Parassitologia 1999, 41, 55–68. [Google Scholar]
- Escalante, A.A.; Freeland, D.E.; Collins, W.E.; Lal, A.A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8124–8129. [Google Scholar] [CrossRef]
- LeClerc, M.C.; Durand, P.; Gauthier, C.; Patot, S.; Billotte, N.; Menegon, M.; Severini, C.; Ayala, F.J.; Renaud, F. Meager genetic variability of the human malaria agent. Plasmodium vivax. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14455–14460. [Google Scholar] [CrossRef]
- Li, J.; Collins, W.E.; Wirtz, R.A.; Rathore, D.; Lal, A.A.; McCutchan, T.F. Geographic subdivision of the range of the malarial parasite Plasmodium vivax. Emerg. Infect. Dis. 2001, 7, 35–42. [Google Scholar] [CrossRef]
- Carter, R. Speculations on the origins of Plasmodium vivax. Trends Parasitol. 2003, 19, 214–219. [Google Scholar] [CrossRef]
- Sinden, R.E.; Gilles, H.M. The malarial parasites. In Essential Malariology, 4th ed.; Warrell, D.A., Gilles, H.M., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 8–34. [Google Scholar]
- Deane, L.M. Simian malaria in Brazil. Mem. Inst.Oswaldo Cruz. 1992, 87, 1–20. [Google Scholar] [CrossRef]
- Service, M.W.; Townson, H. The anopheles vector. In Essential Malariology, 4th ed.; Warrell, D.A., Gilles, H.M., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 59–84. [Google Scholar]
- Schapira, A. Malaria. In Control of Communicable Diseases Manual, 18th ed.; Heymann, D.L., Ed.; American Public Health Association: Washington, DC, USA, 2004; pp. 324–340. [Google Scholar]
- Snow, R.W.; Giles, H.M. Epidemiology of malaria. In Essential Malariology, 4th ed.; Warrell, D.A., Gilles, H.M., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 85–106. [Google Scholar]
- World Malaria Report 2005; Prepared by Roll Back Malaria, World Health Organization, and UNICEF: Geneva, Switzerland, 2005.
- Escalante, A.A.; Barrio, E.; Ayala, F.J. Evolutionary origin of human and primate malarias: Evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 1995, 12, 616–626. [Google Scholar]
- Rich, S.M.; Ayala, F.J. Population structure and recent evolution of Plasmodium falciparum. Proc. Natl. Acad. Sci. 2000, 97, 6994–7001. [Google Scholar] [CrossRef]
- Escalante, A.A.; Ayala, F.J. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 11373–11377. [Google Scholar] [CrossRef]
- Waters, A.P.; Higgins, D.G.; McCutchan, T.F. Plasmodium falciparum apears to have arisen as a result of lateral transfer between avian and human hosts. Proc. Natl. Acad. Sci. U.S.A. 1991, 15, 3140–3144. [Google Scholar]
- Waters, A.P.; Desmond, G.H.; Thomas, F. McCutchan. 1993. Evolutionary relatedness of some models of Plasmodium. Mol. Biol. Evol. 1993, 10, 914–923. [Google Scholar]
- Bergsten, J. A review of long-branch attraction. Cladistics 2005, 21, 163–193. [Google Scholar] [CrossRef]
- Telford, M.J.; Copley, R.R. Animal phylogeny: Fatal attraction. Curr. Biol. 2005, 15, R296–R299. [Google Scholar] [CrossRef]
- Escalante, A.A.; Ayala, F.J. Phylogeny of the malarial genus Plasmodia, derived from rRNA Gene Sequences. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 11373–11377. [Google Scholar] [CrossRef]
- Escalante, A.A.; Barrio, E.; Ayala, F.J. Evolutionary origin of human and primate malarias: Evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 1995, 12, 616–626. [Google Scholar]
- Qari, S.H.; Ya, P.S.; Pieniazek, N.J.; Collins, W.E.; Lal, A.A. Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: Monophyletic nature of the human malaria parasite Plasmodium falciparum. Mol. Phylogenet. Evol. 1996, 6, 157–165. [Google Scholar] [CrossRef]
- McCutchan, T.F.; Kissenger, J.C.; Touray, M.G.; Rogers, M.J.; Li, J.; Sullivan, M.; Braga, E.M.; Krettli, A.U.; Miller, L.H. Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 11889–11894. [Google Scholar] [CrossRef]
- Escalante, A.A.; Freeland, D.E.; Collins, W.E.; Lal, A.A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8124–8129. [Google Scholar] [CrossRef]
- Perkins, S.L.; Schall, J.J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 2002, 88, 972–978. [Google Scholar] [CrossRef]
- Rich, S.M.; Monica, C.; Light, M.C.; Hudson, R.R.; Ayala, F.J. Malaria’s Eve: Evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4425–4430. [Google Scholar] [CrossRef]
- Volkman, S.K.; Barry, A.E.; Lyons, E.J.; Nielsen, K.M.; Thomas, S.M.; Choi, M.; Thakore, S.S.; Day, K.P.; Wirth, D.F.; Hartl, D.L. Recent origin of Plasmodium falciparum from a single progenitor. Science 2001, 293, 482–484. [Google Scholar] [CrossRef]
- Mu, J.; Duan, J.; Makova, K.D.; Joy, D.A.; Huynh, C.Q.; Branch, O.H.; Li, W.H.; Su, X.Z. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 2002, 418, 323–326. [Google Scholar] [CrossRef]
- Clark, A.G. Population genetics: Malaria variorum. Nature 2002, 418, 283–285. [Google Scholar] [CrossRef]
- Rich, S.M.; Leendertz, F.H.; Xu, G.; Lebreton, M.; Djoko, C.F.; Aminake, M.N.; Takang, E.E.; Diffo, J.L.; Pike, B.L.; Rosenthal, B.M.; Formenty, P.; Boesch, C.; Ayala, F.J.; Wolf, N.D. The origin of malignant malaria. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 14902–14907. [Google Scholar] [CrossRef]
- Ollomo, B.; Durand, P.; Prugnolle, F.; Douzery, E.; Arnathau, C.; Nkoghe, D.; Leroy, E.; Renaud, F. A new malaria agent in African hominids. PLoS Pathog. 2009, 5, e1000446. [Google Scholar] [CrossRef]
- Martin, M.J.; Rayner, J.; Gagneux, P.; Barnwell, J.W.; Varki, A. Evolution of human-chimpanzee differences in malaria susceptibility: Relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12819–12824. [Google Scholar] [CrossRef]
- Collins, W.E.; Grady, K.K.; Millet, P.; Sullivan, J.; Morris, C.L.; Galland, G.G.; Richardson, B.B.; Yang, C. Adaptation of a strain of Plasmodium falciparum from a Montagnard refugee to Aotus monkeys. J. Parasitol. 1997, 83, 1174–1177. [Google Scholar] [CrossRef]
- Jervis, H.R.; Sprinz, H.; Johnson, A.J.; Wellde, B.T. Experimental infection with Plasmodium falciparum in Aotus monkeys. II. Observations on host pathology. Am. J. Trop. Med. Hyg. 1972, 21, 272–281. [Google Scholar]
- O’Leary, D.S.; Barr, C.F.; Wellde, B.T.; Conrad, M.E. Experimental infection with Plasmodium falciparum in Aotus monkeys: III. The development of disseminated intravasular coagulation. Am. J. Trop. Med. Hyg. 1972, 21, 282–287. [Google Scholar]
- Campbell, C.C.; Collins, W.E.; Milhaus, W.K.; Roberts, J.M.; Armstead, A. Adaptation of the Indochina I/CDC strain of Plasmodium falciparum to the squirrel monkey (Saimiri sciureus). Am. J. Trop. Med. Hyg. 1986, 35, 472–475. [Google Scholar]
- Gysin, J.; Hommel, M.; Pereira da Silva, L. Experimental infection of the squirrel monkey (Saimiri sciureus) with Plasmodium falciparum. J. Parsitol. 1980, 66, 1003–1009. [Google Scholar] [CrossRef]
- Whitely, H.E.; Everitt, J.I.; Kakoma, I.; James, M.A.; Ristic, M. Pathologic changes associated with fatal Plasmodium falciparum infection in the Bolivian squirrel monkey: (Saimiri sciureus boliviensis). Am. J. Trop. Med. Hyg. 1987, 37, 1–8. [Google Scholar]
- Duarte, A.M.; Malafronte, Rdos. S.; Cerutti, C., Jr.; Curado, I.; de Paiva, B. R.; Maeda, A.Y.; Yamasaki, T.; Laurito Summa, M.G.; de Andrade Neves, D. doV.; de Oliveira, S.G.; Gomes, A. deC. Natural Plasmodium infectious in Brazilian wild monkeys: Reservoirs for human infections? Acta Trop. 2008, 107, 179–185. [Google Scholar]
- Lourenco-de Oliveira, R.; Deane, L.M. Simian malaria at two sites in the Brazilian Amazon. I-The infection rates of Plasmodium brasilianum in non-human primates. Mem. Inst.Oswaldo Cruz 1995, 90, 331–339. [Google Scholar] [CrossRef]
- Cogswell, F.B. Malaria and piroplasms of non-human primates. In Companion and Exotic Animal Parasitology; Bowman, D.D., Ed.; International Veterinary Information Service: New York, NY, USA, 2000. [Google Scholar]
- Eyles, D. The species of malaria: taxonomy, morphology, life cycle, and geographical distribution of the monkey species. J. Parasitol. 1963, 49, 866–887. [Google Scholar] [CrossRef]
- de Thoisy, B.; Vogel, I.; Reynes, J.M.; Pouliquen, J.F.; Carme, B.; Kazanji, M.; Vie, J.C. Health evaluation of translocated free-ranging primates. Am. J. Primatol. 2001, 54, 1–16. [Google Scholar]
- Porter, J., Jr.; Johnson, C.M.; de Sousa, L. Prevalence of malaria in Panamanian primates. J. Parasitol. 1966, 52, 669–670. [Google Scholar]
- Warren, McW.; Wharton, R.H. The vectors of simian malaria: identity, biology, and geographical distribution. J. Parasitol. 1963, 49, 892–904. [Google Scholar]
- Collins, W.E.; Skinner, J.C.; Huong, A.Y.; Broderson, J.R.; Sutton, B.B.; Mehaffey, P. Studies on a newly isolated strain of Plasmodium brasilianum in Aotus and Saimiri monkeys. J. Parasitol. 1985, 71, 767–770. [Google Scholar] [CrossRef]
- Dunn, F.L.; Lambrecht, F.L. Hosts of Plasmodium brasilianum Gonder and von Berenberg-Glosser, 1908. J. Parasitol. 1963, 49, 316–319. [Google Scholar]
- Deane, L.M. Studies on simian malaria in Brazil. Bull. World Health Organ. 1964, 31, 752–753. [Google Scholar]
- Baerg, D.C. A naturally acquired infection of Plasmodium brasilianum in the marmoset, Saguinus geoffroyi. J. Parasitol. 1971, 57, 8. [Google Scholar]
- Garnham, P.C. Distribution of simian malaria parasites in various hosts. J. Parasitol. 1963, 49, 905–911. [Google Scholar] [CrossRef]
- da Fonseca, F. Plasmódio de primata do Brasil. Mem. Inst. Oswaldo Cruz 1951, 49, 543–551. [Google Scholar] [CrossRef]
- Fooden, J. A revision of the woolly monkeys (genus Lagothrix). J. Mammol. 1963, 44, 213–247. [Google Scholar]
- Allison, A.A. Genetic control of resistance to human malaria. Curr. Opin. Immunol. 2009, 21, 499–505. [Google Scholar]
- Luzzatto, L.; Nwachiku-Jarrett, E.S.; Reddy, S. Increased sickling of parasitised erythrocytes as a mechanism of resistance against malaria in sickle cell trait. Lancet 1970, 1, 319–321. [Google Scholar]
- Fowkes, F.J.I.; Allen, S.J.; Allen, A.; Alpers, M.P.; Weatherall, D.J.; Day, K.P. Increased microerythrocyte count in homozygous α+- thalassaemia contributes to protection against severe malarial anaemia. PLoS Med. 2008, 5, e56. [Google Scholar] [CrossRef]
- Williams, T.N.; Maitland, K.; Bennett, S.; Ganczakowski, M.; Peto, T.E.A.; Newbold, C.I.; Bowden, D.K.; Weatherall, D.J.; Clegg, J.B. High incidence of malaria in α-thalassaemic children. Nature 1996, 383, 522–525. [Google Scholar] [CrossRef]
- Allison, A.C.; Clyde, D.F. Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. Br. Med. J. 1961, 1, 1346–1349. [Google Scholar]
- Ruwende, C.; Hill, A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J. Mol. Med. 1998, 76, 581–588. [Google Scholar] [CrossRef]
- Ruwende, C.; Khoo, S.C.; Snow, R.W.; Yates, S.N.R.; Kwiatokowski, D.; Gupta, S.; Warn, P.; Allsopp, C.E.M.; Gilbert, S.C.; Peschu, N.; Newbold, C.I.; Greenwood, B.M.; Marsh, K.; Hill, A.V.S. Natural selection of hemi-and heterozygotes for G6PD deficiency in Africa by resitance to severe malaria. Nature 2002, 376, 246–249. [Google Scholar]
- Carter, R.C.; Mendis, K.N. Evolutionary and historical aspects of theburden of malaria. Clin. Microbiol. Rev. 2002, 15, 564–594. [Google Scholar] [CrossRef]
- Mendis, K.N.; Sina, B.J.; Marchesini, P.; Carter, R.C. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 2001, 64, 97–106. [Google Scholar]
- Marsh, K. Immunology of malaria. In Essential Malariology, Fourth Edition; Gilles, H.M., Ed.; Oxford University Press: New York, NY, USA, 2002; pp. 252–267. [Google Scholar]
- Weatherall, D.J.; Clegg, J.B. Inherited haemoglobin disorders: an increasing global health problem. Bull. World Health Organ. 2001, 79, 8. [Google Scholar]
- Vichinsky, E.P.; MacKlin, E.A.; Waye, J.S.; Lorey, F.; Olivieri, N.F. Changes in the epidemiology of thalassemia in North America: A new minority disease. Pediatrics 2005, 111, e818–e825. [Google Scholar]
- May, J.; Evans, J.A.; Timmann, C.; Ehmen, C.; Busch, W.; Thye, T.; Agbenyega, T.; Horstmann, R.D. Hemoglobin variants and disease manifestation in severe falciparum malaria. JAMA 2007, 297, 2220–2226. [Google Scholar] [CrossRef]
- Capellini, M.D.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef]
- Nkhoma, E.T.; Poole, C.; Vannappagari, V.; Hall, S.A.; Beutler, E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol. Dis. 2009, 42, 267–278. [Google Scholar] [CrossRef]
- Miller, L.H.; Mason, S.J.; Clyde, D.F.; McGinniss, M.H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 1976, 295, 302–304. [Google Scholar] [CrossRef]
- Zimmerman, P.A.; Woolley, I.; Masinde, G.L.; Miller, S.M.; McNamara, D.T.; Hazlett, F.; Mgone, C.S.; Alpers, M.P.; Genton, B.; Boatin, G.A.; Kazura, J.W. Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13973–13977. [Google Scholar] [CrossRef]
- Kiple, K.F.; Higgins, B.T. Yellow fever and the Africanization of the Caribbean. In Disease and Demography in the Americas; John, W., Verano, J.W., Ubelaker, D.H., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1992; pp. 237–248. [Google Scholar]
- World Health Organization. Yellow Fever. Available online: http://www.who.int/mediacentre/factsheets/fs100/en/ (accessed on December 10, 2009).
- Shrewsbury, J.D.F. The yellow plague. J Hist Med Allied Sci 1949, IV, 5–47. [Google Scholar]
- Wood, J.O. The history of medicine in Ireland. Ulster Med J, 1982, 51, 35–45. [Google Scholar]
- Bruce-Chwatt, L.J.; Zulueta, J. The Rise and Fall of Malaria in Europe: A Historico-Epidemiological Study; Oxford University Press: New York, NY, USA, 1980. [Google Scholar]
- Dunn, F.L. Malaria. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 855–862. [Google Scholar]
- Stannard, J. Diseases of western antiquity. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 262–270. [Google Scholar]
- Charkravorty, R.C. Diseases of antiquity in south Asia. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 408–413. [Google Scholar]
- Joralemon, D. New World depopulation and the case of disease. J. Anthropol. Res. 1992, 38, 108–127. [Google Scholar]
- Cormier, L.A. Monkey ethnobotany: Preserving biocultural diversity in Amazonia. In Ethnobiology and Biocultural Diversity: Proceedings of the Seventh International Congress of Ethnobiology; Stepp, J.R., Wyndham, F.S., Zarger, R., Eds.; University of Georgia Press: Athens, GA, USA, 2002; pp. 313–325. [Google Scholar]
- Cormier, L.A. Kinship with Monkeys: The Guajá Foragers of Eastern Amazonia; Historical Ecology Series; Columbia University Press: New York, NY, USA, 2003. [Google Scholar]
- Cormier, L.A. Um aroma no ar: A ecologia histórica das plantas anti-fantasma entre os Guajá da Amazônia. Mana: Estudos de Antropologia Social 2005, 11, 129–154. [Google Scholar]
- Shepard, G.H. A sensory ecology of medicinal plant therapy in two Amazonian societies. Am. Anthropol. 2004, 106, 252–266. [Google Scholar] [CrossRef]
- Oakdale, S. History and forgetting in an indigenous Amazonian community. Ethnohistory 2001, 48, 381–401. [Google Scholar] [CrossRef]
- Wilbert, W. The pneumatic theory of female Warao herbalists. Soc. Sci. Med. 1987, 25, 1139–1146. [Google Scholar]
- Honigsbaum, M.; Willcox, M. Traditional Medicinal Plants and Malaria; Willcox, M., Bodeker, G., Rasoanaivo, P., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 21–41. [Google Scholar]
- Hornberger, N.H. Language policy, language education, language rights: Indigenous immigrant, and international perspectives. Lang. Soc. 1998, 27, 439–458. [Google Scholar] [CrossRef]
- Cleary, D. Towards an environmental history of the Amazon: From prehistory to the 19th century. Lat. Am. Res. Rev. 2001, 36, 64–91. [Google Scholar]
- Denevan, W.M. The pristine myth: The landscape of the Americas in 1492. Ann. Assoc. Am. Geogr. 1992, 82, 369–385. [Google Scholar]
- Heckenberger, M.J.; Kuikuro, A.; Kuikuro, U.T.; Russell, J.C.; Schmidt, M.; Fausto, C.; Francetto, B. Amazonia 1492: Pristine forest or cultural parkland? Science 2003, 301, 1710–1714. [Google Scholar] [CrossRef]
- Balée, W.; Erickson, C. Time and Complexity in Historical Ecology: Studies from the Neotropical Lowlands; Historical Ecology Series; Columbia University Press: New York, NY, USA, 2006. [Google Scholar]
- Carmichael, A.G. Diseases of the Renaissance and early modern Europe. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 279–287. [Google Scholar]
- Escalante, A.A.; Cornejo, O.E.; Freeland, D.E.; Poe, A.C.; Durrego, E.; Collins, W.E.; Lal, A.A. A monkey’s tale: The origin of Plasmodium vivax as a human malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 2004, 102, 1980–1985. [Google Scholar]
- Rich, S.M. The unpredictable past of Plasmodium vivax revealed in its genome. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15547–15548. [Google Scholar] [CrossRef]
- Takai, M.; Anaya, F.; Shigehara, N.; Setoguchi, T. New fossil materials of the earliest Branisella boliviana and the problem of platyrrhine origins. Am. J. Phys. Anthropol. 2000, 111, 263–281. [Google Scholar] [CrossRef]
- Rosenberger, A.L.; Hartwig, W.C.; Wolff, R.G. Szalatavus attricuspis, an early platyrrhine primate. Folia Primatol. 1991, 56, 225–233. [Google Scholar] [CrossRef]
- Ramenofsky, A. Diseases of the Americas, 1492-1700. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 317–327. [Google Scholar]
- Heyerdahl, T. Americans in the Pacific: The Theory behind the Kon Tiki Expedition; Rand McNally: New York, NY, USA, 1953. [Google Scholar]
- Deane, L.M.; Feirreira Neto, J.A.; Deane, M.P.; Silveira, I.P. Anopheles (Kerteszia) cruzii a natural vector of malaria parasites Plasmodium simium and Plasmodium brasilianum. Trans. R. Soc. Trop. Med. Hyg. 1970, 64, 647. [Google Scholar]
- New World Primates: Ecology, Evolution, and Behavior; Kinzey, W.G. (Ed.) Aldine de Gruyter: New York, NY, USA, 1997.
- Emmons, L.H.; Feer, F. Neotropical Rainforest Mammals, A Field Guide; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Marchant, A. Dom Joao’s botanical garden. Hisp Am Hist Rev 1961, 41, 259–274. [Google Scholar] [CrossRef]
- Conrad, R. The planter class and the debate over Chinese immigration to Brazil, 1850−1893. Int. Migr. Rev. 1975, 9, 41–55. [Google Scholar] [CrossRef]
- Lesser, J. Negotiating National Identity: Immigrants, Minorities, and the Struggle for Ethnicity in Brazil; Durham: Duke University Press, Durham, NC, USA, 1999. [Google Scholar]
- McCauley, C. Aggressive active case detection: a malaria control strategy based on the Brazilian model. Soc. Sci. Med. 2005, 60, 563–573. [Google Scholar]
- Da Silva-Nunes, M.; Ferreira, M.U. Clinical spectrum of uncomplicated malaria in semi-immune Amazonians: Beyond the “symptomatic” vs “asymptomatic” dichotomy. Mem. Inst. Oswaldo Cruz 2007, 102, 341–347. [Google Scholar]
- Pan American Health Organization. Health of indigenous populations in the Americas: Report of the ad-hoc consultative group on the health agenda for the Americas. 138th Session of the Executive Committee, Washington, DC, USA; 2006. Available online: http://www.paho.org/English/GOV/CE/ce138-inf5-e.pdf (accessed on February 15, 2008).
- Cavasini, M.T.V.; Ribeiro, W.L.; Kawamoto, F.; Ferriera, M.U. How prevalent is Plasmodium malariae in Rondonia, Western Brazilian Amazon? Rev. Soc. Bras. Med. Trop. 2000, 33, 489–492. [Google Scholar]
- Scopel, K.K.G.; Fontes, C.J.F.; Nunes, A.C.; Horta, M.F.; Braga, E.M. High prevalence of Plasmodium malariae infections in a Brazilian Amazon endemic area (Apiacás—Mato Grosso State) as detected by polymerase chain reaction. Acta Trop. 2004, 90, 61–64. [Google Scholar]
- Coura, J.R.; Suárez-Mutis, M.; Ladeia-Andrade, S. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection—a review. Mem. Inst. Oswaldo Cruz 2006, 101, 229–237. [Google Scholar]
- Mueller, I.; Zimmerman, P.A.; Reeder, J.C. Plasmodium malariae and Plasmodium ovale—the ‘bashful’ malaria parasites. Trends Parasitol. 2007, 23, 278–283. [Google Scholar] [CrossRef]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Cormier, L.A. Monkey as food, monkey as child: Guajá symbolic cannibalism. In Primates Face to Face: The Conservation Implications of Human-Nonhuman Primates Interconnections; Fuentes, A., Wolfe, L.D., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 63–84. [Google Scholar]
- Schall, J.J.; Vogt, S.P. Distribution of malaria in Anolis lizards of the Luquillo Forest, Puerto Rico: Implications for host community ecology. Biotropica 1993, 25, 229–235. [Google Scholar]
- Garnham, P.C.; Kuttler, K.L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond., B, Biol. Sci. 1980, 206, 395–402. [Google Scholar] [CrossRef]
- Marchand, J. Tribal epidemics in the Yukon. JAMA 1943, 123, 1019–1020. [Google Scholar] [CrossRef]
- Mu, J.; Joy, D.A.; Duan, J.; Huang, Y.; Carlton, J.; Walker, J.; Barnwell, J.; Beerli, P.; Charleston, M.A.; Pybus, O.G.; Su, X.Z. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 2005, 22, 1686–1693. [Google Scholar] [CrossRef]
- Feng, X.; Carlton, J.M.; Joy, D.A.; Mu, J.; Furuya, T.; Suh, B.B.; Wang, Y.; Barnwell, J.W.; Su, X.Z. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8502–8507. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cormier, L.A. The Historical Ecology of Human and Wild Primate Malarias in the New World. Diversity 2010, 2, 256-280. https://doi.org/10.3390/d2020256
Cormier LA. The Historical Ecology of Human and Wild Primate Malarias in the New World. Diversity. 2010; 2(2):256-280. https://doi.org/10.3390/d2020256
Chicago/Turabian StyleCormier, Loretta A. 2010. "The Historical Ecology of Human and Wild Primate Malarias in the New World" Diversity 2, no. 2: 256-280. https://doi.org/10.3390/d2020256
APA StyleCormier, L. A. (2010). The Historical Ecology of Human and Wild Primate Malarias in the New World. Diversity, 2(2), 256-280. https://doi.org/10.3390/d2020256