Morphological Plasticity and Abundance Patterns of Arrhenia antarctica in the South Shetland Islands: Implications for Fungal Ecology in a Warming Antarctica
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pileus Color
3.2. Pileus Form
3.3. Pileus Diameter
3.4. Possible Signs of Predation
3.5. Grass/Mosses/Lichens Associated to the Basidiomata
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ochyra, R.; Lewis-Smith, R.I.; Bednarek-Ochyra, H. The Illustrated Moss Flora of Antarctica, 1st ed.; Cambridge University Press: Cambridge, UK, 2008; p. 704. [Google Scholar]
- Black, M.; Sacks, B.J.; Dortmans, P.; Yeung, J.; Savitz, S.; Stephenson, S.R.; Tingstad, A.; Pezard, S.; Jouan, N.; Black, J. Antarctica at Risk: Geostrategic Manoeuvring and the Future of the Antarctic Treaty System; RAND Corporation: Santa Monica, CA, USA, 2023; p. 88. [Google Scholar]
- Carrasco, J.F.; Bozkurt, D.; Cordero, R.R. A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Sci. 2021, 28, 100653. [Google Scholar] [CrossRef]
- Kerr, R.; Mata, M.M.; Mendes, C.R.B.; Secchi, E.R. Northern Antarctic Peninsula: A marine climate hotspot of rapid changes on ecosystems and ocean dynamics. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 149, 4–9. [Google Scholar] [CrossRef]
- Vignon, É.; Roussel, M.L.; Gorodetskaya, I.V.; Genthon, C.; Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 2021, 48, e2020GL092281. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Cordero, R.R. Analyzing precipitation changes in the northern tip of the Antarctic Peninsula during the 1970–2019 period. Atmosphere 2020, 11, 1270. [Google Scholar] [CrossRef]
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [CrossRef]
- Convey, P.; Chown, S.L.; Clarke, A.; Barnes, D.K.A.; Bokhorst, S.; Cummings, V.; Ducklow, H.W.; Frati, F.; Green, T.G.A.; Gordon, S.; et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 2014, 84, 203–244. [Google Scholar] [CrossRef]
- Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Massom, R.; Peck, L.S.; Rintoul, S.R.; Storey, J.W.V.; Vaughan, D.G.; Wilson, T.J.; et al. Polar research: Six priorities for Antarctic science. Nature 2014, 512, 23–25. [Google Scholar] [CrossRef]
- Benayas, J.; Pertierra, L.; Tejedo, P.; Lara, F.; Bermudez, O.; Hughes, K.A.; Quesada, A. A review of scientific research trends within ASPA No. 126 Byers Peninsula, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 128–145. [Google Scholar] [CrossRef]
- Hughes, K.A.; Cowan, D.A.; Wilmotte, A. Protection of Antarctic microbial communities—‘Out of sight, out of mind’. Front. Microbiol. 2015, 6, 151. [Google Scholar] [CrossRef]
- Coleine, C.; Stajich, J.E.; Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. 2022, 37, 517–528. [Google Scholar] [CrossRef]
- Tsuji, M. Survey on fungi in Antarctica and High Arctic regions, and their impact on climate change. Climate 2023, 11, 195. [Google Scholar] [CrossRef]
- Bertazzo-Silva, F.A.; Putzke, J.; Furlan-Lopes, C.; D’Ávila, M.F.; Costa, A.L.; Carvalho, E.L.; Zorzi, A.F.; Schaefer, C.E.G.R. Expanding geographic distribution knowledge of Galerina marginata (Batsch) Kühner (Agaricales, Hymenogastraceae) with a novel Antarctic record. Biodivers. Data J. 2024, 12, e125727. [Google Scholar] [CrossRef] [PubMed]
- Putzke, J.; Putzke, M. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae, 1st ed.; LupaGraf: Santa Cruz do Sul, Brazil, 2018; p. 518. [Google Scholar]
- Palfner, G.; Binimelis-Salazar, J.; Alarcón, S.T.; Torres-Mellado, G.; Gallegos, G.; Peña-Cortés, F.; Casanova-Katny, A. Do new records of macrofungi indicate warming of their habitats in terrestrial Antarctic ecosystems? Czech Polar Rep. 2020, 10, 281–296. [Google Scholar] [CrossRef]
- Singer, R. A fungus collected in the Antarctic. Sydowia-Beih. 1956, 1, 16–23. [Google Scholar]
- Redhead, S.A. Phylogeny of agarics: Partial systematics solutions for core omphalinoid genera in the Agaricales (euagarics). Mycotaxon 2002, 83, 19–57. [Google Scholar]
- Pegler, D.N.; Spooner, B.M.; Smith, R.I.L. Higher fungi of Antarctica, the Subantarctic zone and Falkland Islands. Kew Bull. 1980, 35, 499–562. [Google Scholar] [CrossRef]
- Horak, E. Agaricales in Antarctica and Subantarctica: Distribution, ecology, and taxonomy. In Arctic and Alpine Mycology; Laursen, G.A., Ammirati, J.F., Eds.; University of Washington Press: Seattle, WA, USA, 1982; pp. 82–118. [Google Scholar]
- Putzke, J.; Pereira, A.B. Macroscopic fungi from the South Shetland Islands, Antarctica. Ser. Cient. INACH 1996, 46, 31–39. [Google Scholar]
- Gumińska, B.; Heinrich, Z.; Olech, M. Macromycetes of the South Shetland Islands (Antarctica). Pol. Polar Res. 1994, 15, 103–109. [Google Scholar]
- Gutt, J.; Isla, E.; Xavier, J.C.; Adams, B.J.; Ahn, I.-Y.; Cheng, C.-H.C.; Colesie, C.; Cummings, V.J.; Di Prisco, G.; Griffiths, H.; et al. Antarctic ecosystems in transition—Life between stresses and opportunities. Biol. Rev. 2021, 96, 798–821. [Google Scholar] [CrossRef]
- Garrido-Benavent, I.; Blanchette, R.A.; de los Ríos, A. Deadly mushrooms of the genus Galerina found in Antarctica colonized the continent as early as the Pleistocene. Antarct. Sci. 2023, 35, 345–358. [Google Scholar] [CrossRef]
- Yarzábal, L.A.; Salazar, L.M.B.; Batista-García, R.A. Climate change, melting cryosphere and frozen pathogens: Should we worry…? Environ. Sustain. 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Rosa, L.H.; Zani, C.L.; Cantrell, C.L.; Duke, S.O.; Van Dijck, P.; Desideri, A.; Rosa, C.A. Fungi in Antarctica: Diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In Fungi of Antarctica; Rosa, L.H., Ed.; Springer: Cham, Switzerland, 2019; pp. 1–17. [Google Scholar]
- Newsham, K.K.; Garnett, M.H.; Robinson, C.H.; Cox, F. Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils. Sci. Rep. 2018, 8, 7866. [Google Scholar] [CrossRef] [PubMed]
- Krah, F.S.; Büntgen, U.; Schaefer, H.; Müller, J.; Andrew, C.; Boddy, L.; Diez, J.; Egli, S.; Freckleton, R.; Gange, A.C.; et al. European mushroom assemblages are darker in cold climates. Nat. Commun. 2019, 10, 2890. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press Ltd.: London, UK, 1997; p. 605. [Google Scholar]
- Jumpponen, A.; Trappe, J.M. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X. Changes in color, antioxidant, and free radical scavenging enzyme activity of mushrooms under high oxygen modified atmospheres. Postharvest Biol. Technol. 2012, 69, 1–6. [Google Scholar] [CrossRef]
- Procházka, P.; Jana, S.; Karel, T.; Mullen, K.J.; Čabelková, I. Climatic factors affecting wild mushroom foraging in Central Europe. Forests 2023, 14, 382. [Google Scholar] [CrossRef]
- Royse, D.J.; Rhodes, T.W.; Ohga, S.; Sanchez, J.E. Yield, mushroom size and time to production of Pleurotus cornucopiae (oyster mushroom) grown on switch grass substrate spawned and supplemented at various rates. Bioresour. Technol. 2004, 91, 85–91. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Li, M.; Li, X.; Sun, Z. Yield, size, nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J. Biol. Sci. 2017, 24, 347–354. [Google Scholar] [CrossRef]
- Elliott, T.F.; Jusino, M.A.; Trappe, J.M.; Lepp, H.; Ballard, G.A.; Bruhl, J.J.; Vernes, K. A global review of the ecological significance of symbiotic associations between birds and fungi. Fungal Divers. 2019, 98, 161–194. [Google Scholar] [CrossRef]
- Costa, A.L.; Lopes, C.F.; Heberle, M.A.; Putzke, J. The bird shiny cowbirds (Molothrus bonariensis) in a relationship interesting of mycophagy with the mushroom Macrolepiota bonaerensis in the Brazilian pampa biome. Stud. Multidiscip. Rev. 2022, 3, 153–167. [Google Scholar] [CrossRef]
- Costa, A.L.; Mendes, M.F.; Furlan-Lopes, C.; Bertazzo-Silva, F.A.; Köhler, A.; Putzke, J. First report of Zygothrica candens Burla, 1956 (Diptera, Drosophilidae) in mycophagic association with the mushroom Oudemansiella cubensis (Berk. and M.A. Curtis) R.H. Petersen, 2010 (Agaricales, Physalacriaceae) in southern Brazil. Braz. J. Biol. 2023, 82, e267871. [Google Scholar] [CrossRef]
- Santamaria, B.; Verbeken, A.; Haelewaters, D. Mycophagy: A global review of interactions between invertebrates and fungi. J. Fungi 2023, 9, 163. [Google Scholar] [CrossRef]
- Elliot, T.F.; Marshall, P.A. Animal-fungal interactions 1: Notes on bowerbird’s use of fungi. Aust. Zool. 2016, 38, 59–61. [Google Scholar] [CrossRef]
- Andreev, A.V. Winter energy balance and hypothermia of the Siberian jay. Sov. J. Ecol. 1978, 9, 352–357. [Google Scholar]
- Bertazzo-Silva, F.A.; Putzke, J.; Pereira, A.B.; Furlan-Lopes, C.; Costa, A.L.; Ferraz, K.R.; Klotz-Neves, A.L.; Schaefer, C.E.G.R. Novel insights into the association between Leptogium puberulum (Ascomycota) and Deschampsia antarctica (Poaceae): Implications for plant–lichen dynamics in Antarctica. Polar Biol. 2025, 48, 54. [Google Scholar] [CrossRef]
- Karich, A.; Jarling, R.; Ullrich, R.; Demski, D.; Bubner, B.; Hofrichter, M. Two new Agaricomycetes related to post-fire mosses. Mycol. Prog. 2024, 23, 28. [Google Scholar] [CrossRef]
- Voitk, A.; Saar, I.; Lücking, R.; Moreau, P.-A.; Corriol, G.; Krisai-Greilhuber, I.; Thorn, R.G.; Hay, C.R.J.; Moncada, B.; Gulden, G. Surprising morphological, ecological and ITS sequence diversity in the Arrhenia acerosa complex (Basidiomycota: Agaricales: Hygrophoraceae). Sydowia 2020, 73, 133–162. [Google Scholar]
- Voitk, A.; Saar, I.; Moncada, B.; Lickey, E.B. Circumscription and typification of sphagnicolous omphalinoid species of Arrhenia (Hygrophoraceae) in Newfoundland and Labrador: Three obligate and one facultative species. Mycol. Prog. 2022, 21, 57. [Google Scholar] [CrossRef]
- Diederich, P.; Millanes, A.M.; Wedin, M.; Lawrey, J.D. Flora of Lichenicolous Fungi, Vol. 1; National Museum of Natural History: Luxembourg, 2022. [Google Scholar]
Plant and Lichen Formation | Abundance | Occurrence (%) |
---|---|---|
Moss fields solely composed of Sanionia uncinata | 93 | 40.9% |
Moss fields composed of Sanionia uncinata and Synchitria spp. | 61 | 26.9% |
Moss fields composed of Sanionia uncinata, Leptogium puberulum, and Syntrichia spp. | 23 | 10.1% |
Moss fields composed of Sanionia uncinata, Synchitria spp., and Deschampsia antarctica | 21 | 9.2% |
Moss fields composed of Sanionia uncinata and Leptogium puberulum | 19 | 8.4% |
Moss fields composed of Sanionia uncinata, Brachythecium spp., and Syntrichia spp. | 6 | 2.6% |
Vegetation composed solely of Deschampsia antarctica | 3 | 1.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertazzo-Silva, F.A.; Putzke, J.; Meira, J.L.; Putzke, M.T.L.; Schaefer, C.E.G.R. Morphological Plasticity and Abundance Patterns of Arrhenia antarctica in the South Shetland Islands: Implications for Fungal Ecology in a Warming Antarctica. Diversity 2025, 17, 489. https://doi.org/10.3390/d17070489
Bertazzo-Silva FA, Putzke J, Meira JL, Putzke MTL, Schaefer CEGR. Morphological Plasticity and Abundance Patterns of Arrhenia antarctica in the South Shetland Islands: Implications for Fungal Ecology in a Warming Antarctica. Diversity. 2025; 17(7):489. https://doi.org/10.3390/d17070489
Chicago/Turabian StyleBertazzo-Silva, Fernando Augusto, Jair Putzke, João Lindolfo Meira, Marisa Terezinha Lopes Putzke, and Carlos Ernesto Gonçalves Reynaud Schaefer. 2025. "Morphological Plasticity and Abundance Patterns of Arrhenia antarctica in the South Shetland Islands: Implications for Fungal Ecology in a Warming Antarctica" Diversity 17, no. 7: 489. https://doi.org/10.3390/d17070489
APA StyleBertazzo-Silva, F. A., Putzke, J., Meira, J. L., Putzke, M. T. L., & Schaefer, C. E. G. R. (2025). Morphological Plasticity and Abundance Patterns of Arrhenia antarctica in the South Shetland Islands: Implications for Fungal Ecology in a Warming Antarctica. Diversity, 17(7), 489. https://doi.org/10.3390/d17070489