The Role of Alternative Crop Cultivation in Promoting Human-Elephant Coexistence: A Multidisciplinary Investigation in Thailand
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Data Collection
2.2.1. Household Survey and Early Adopter Profile
2.2.2. Experiments to Assess Crop Elimination and Elephant Activity
2.2.3. Farmer Interview and Agro-Economic Viability
2.3. Statistical Analyses
2.3.1. Household Survey and Early Adopter Profile
2.3.2. Crop Elimination and Elephant Activity
2.3.3. Farmer Interview and Agro-Economic Viability
3. Results
3.1. Household Survey and Early Adopter Profile
3.2. Crop Elimination and Elephant Activity
3.3. Farmer Interview and Agro-Economic Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Condition | Code |
Partly Consumed. Eliminated | PCE |
Partly Consumed. Intact | PCI |
Fully Consumed | FC |
Uprooted. Not consumed | UNC |
Trampled/Broken. Eliminated | TE |
Trampled/Broken. Intact | TI |
Missing | MI |
Eliminated. Drought | ED |
Eliminated. Invertebrate depredation | EP |
Eliminated. Other environmental threats | EE |
Disease | DI |
Health | Score |
Eliminated—completely dead/dried up, missing. | 1 |
Poor—withered, fallen/drooping, all leaves are dry. | 2 |
Average—standing, partially dry, no new growth. | 3 |
Good—green/new growth/shoots, some fruiting or flowering. | 4 |
Thriving—entire plant green, many shoots, fruiting, flowering. | 5 |
Maintenance | Hours |
Weeding, watering, mulching, applying fertilizer | |
Height | Centimeters |
From base of the plant to the top of the tallest leaf |
Appendix B
Category | Criteria | Score Descriptions | Score | Source |
---|---|---|---|---|
Ecological | Elephant resilience | The two species that experienced the most elimination by elephants. | 1 | 2020 test plot data |
The two species that experienced some elimination by elephants. | 2 | |||
No elimination by elephants. | 3 | |||
Environmental resilience | >30% of the crops in the sub-plot were eliminated due to environmental threats. | 1 | 2020 test plot data | |
10–30% of the crops in the sub-plot were eliminated due to environmental threats. | 2 | |||
<10% of the crops in the sub-plot were eliminated due to environmental threats. | 3 | |||
Crop health | <3 average health. | 1 | 2020 test plot data | |
3–4 average health. | 2 | |||
4 or higher average health. | 3 | |||
Economic | Input requirements | Treatment is required to assist the crop’s growth and protect it from depredation. | 1 | 2020 test plot data, personal communication |
Treatment is required to assist the crop’s growth or protect it from depredation. | 2 | |||
Little or no treatment is required to assist the crop’s growth or protect it from depredation. | 3 | |||
Profit potential | Did not produce yield by the end of the study period. | 1 | 2020 test plot data | |
Produced yield, but overall, the sub-plot was not profitable by the end of the study period. | 2 | |||
Produced yield, and overall, the sub-plot was profitable by the end of the study period. | 3 | |||
Social | Labor investment | Requires weekly maintenance and treatment application. | 1 | 2020 test plot data, personal communication |
Requires monthly maintenance and treatment application. | 2 | |||
Requires maintenance and treatment application only a few times per year or not at all. | 3 | |||
Local familiarity | Cultivated in household gardens, likely a few individual crops for personal use or consumption. | 1 | Household survey, pineapple farmer interview | |
Cultivated at a commercial scale for sale to local shops and markets. | 2 | |||
Cultivated at a commercial scale for sale to factories, agro-industrial buyers, etc. | 3 |
Appendix C
Variables | Categories | Total (n = 239) | Not Interested (n = 119) | Interested (n = 120) | χ2 (p-Value) |
---|---|---|---|---|---|
Elephant frequency | 1—Never | 8.4 (n = 20) | 7.9 (n = 19) | 0.4 (n = 1) | 23.1 (0.0003) |
2—Less than once per month | 27.2 (n = 65) | 15.1 (n = 36) | 12.1 (n = 29) | ||
3—Once per month | 18.8 (n = 45) | 8.8 (n = 21) | 10.0 (n = 24) | ||
4—Once per week | 19.2 (n = 46) | 7.1 (n = 17) | 12.1 (n = 29) | ||
5—Several times per week | 18.0 (n = 43) | 6.7 (n = 16) | 11.3 (n = 27) | ||
6—Every Night | 8.4 (n = 20) | 4.2 (n = 10) | 4.2 (n = 10) | ||
Benefits from elephants | 0—No | 64.4 (n = 154) | 36.0 (n = 86) | 28.5 (n = 68) | 5.7 (0.0170) |
1—Yes | 35.6 (n = 85) | 13.8 (n = 33) | 21.8 (n = 52) | ||
Total land (rai) | 1—(1–5) | 10.5 (n = 25) | 5.0 (n = 12) | 5.4 (n = 13) | 0.2 (0.9760) |
2—(6–10) | 43.1 (n = 103) | 22.2 (n = 53) | 20.9 (n = 50) | ||
3—(11–15) | 25.1 (n = 60) | 12.1 (n = 29) | 13.0 (n = 31) | ||
4 (>16) | 21.3 (n = 51) | 10.5 (n = 25) | 10.9 (n = 26) | ||
Age | 1—(18–35) | 10.5 (n = 25) | 7.5 (n = 18) | 2.9 (n = 7) | 8.9 (0.0647) |
2—(36–45) | 25.1 (n = 60) | 13.0 (n = 31) | 12.1 (n = 29) | ||
3—(46–55) | 34.7 (n = 83) | 13.8 (n = 33) | 20.9 (n = 50) | ||
4—(56–65) | 21.8 (n = 52) | 10.9 (n = 26) | 10.9 (n = 26) | ||
5—(66+) | 7.9 (n = 19) | 4.6 (n = 11) | 3.3 (n = 8) | ||
Gender | 0—Female | 43.5 (n = 104) | 21.8 (n = 52) | 21.8 (n = 52) | 0.0 (1.0000) |
1—Male | 56.5 (n = 135) | 28.0 (n = 67) | 28.5 (n = 68) |
Appendix D
Species | Planted | Eliminated | Eliminated: Elephants | Eliminated: Environmental Threats | Total Eliminated |
---|---|---|---|---|---|
2020 test plot | |||||
Pineapple | 400 | 400 | 100.0% | 0.0% | 100.0% |
Mulberry | 112 | 59 | 1.8% | 50.9% | 52.7% |
Kaffir lime | 58 | 26 | 5.2% | 39.7% | 44.8% |
Lime | 24 | 7 | 0.0% | 29.2% | 29.2% |
Chili | 295 | 66 | 4.4% | 18.0% | 22.4% |
Karonda | 12 | 1 | 0.0% | 8.3% | 8.3% |
Citronella | 300 | 16 | 0.7% | 4.7% | 5.3% |
Lemongrass | 309 | 1 | 0.0% | 0.3% | 0.3% |
2021 test plot #1 | |||||
Pineapple | 200 | 180 | 90.0% | 0.0% | 90.0% |
Lemongrass | 200 | 2 | 1.8% | 2.4% | 4.2% |
Citronella | 200 | 11 | 1.7% | 3.9% | 5.6% |
2021 test plot #2 | |||||
Pineapple | 200 | 200 | 100.0% | 0.0% | 100.0% |
Lemongrass | 200 | 2 | 0.0% | 1.0% | 1.0% |
Citronella | 200 | 1 | 0.0% | 0.5% | 0.5% |
2021 test plot #3 | |||||
Pineapple | 200 | 63 | 31.5% | 0.0% | 31.5% |
Lemongrass | 200 | 16 | 6.0% | 2.0% | 8.0% |
Citronella | 200 | 37 | 5.0% | 13.5% | 18.5% |
2021 test plot #4 | |||||
Pineapple | 200 | 165 | 82.5% | 0.0% | 82.5% |
Lemongrass | 200 | 10 | 2.0% | 3.0% | 5.0% |
Citronella | 200 | 1 | 0.0% | 0.5% | 0.5% |
2021 test plot #5 | |||||
Pineapple | 200 | 200 | 100.0% | 0.0% | 100.0% |
Lemongrass | 200 | 12 | 1.0% | 5.0% | 6.0% |
Citronella | 200 | 6 | 1.0% | 2.0% | 3.0% |
Appendix E
Plot | Forest Edge (m) | Observation Nights | Approached | Approached (%) | Entered | Entered (%) | Caused Damage | Caused Damage (%) | Elephant Elimination: Pineapple | Elephant Elimination: Lemongrass | Elephant Elimination: Citronella |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 test plot: pineapple present | 20 | 263 | 108 | 41.1% | 51 | 19.4% | 22 | 8.4% | 100.0% | 0.0% | 0.7% |
2020 test plot: pineapple absent | 165 | 49 | 29.7% | 13 | 7.9% | 3 | 1.8% | NA | 0.0% | 0.0% | |
2020 test plot: total | 428 | 157 | 36.7% | 64 | 15.0% | 25 | 5.8% | 100.0% | 0.0% | 0.7% | |
2021: plot 1 | 55 | 365 | 115 | 31.5% | 43 | 11.8% | - | 90.0% | 1.8% | 1.7% | |
2021: plot 2 | 10 | 365 | 102 | 27.9% | 40 | 11.0% | - | 100.0% | 0.0% | 0.0% | |
2021: plot 3 | 10 | 365 | 121 | 33.2% | 26 | 7.1% | - | 31.5% | 6.0% | 5.0% | |
2021: plot 4 | 125 | 365 | 156 | 42.7% | 55 | 15.1% | - | 82.5% | 2.0% | 0.0% | |
2021: plot 5 | 10 | 365 | 163 | 44.7% | 69 | 18.9% | - | 100.0% | 1.0% | 1.0% |
References
- Menon, V.; Tiwari, S.K. Population status of Asian elephants Elephas maximus and key threats. Int. Zoo. Yearb. 2019, 53, 17–30. [Google Scholar] [CrossRef]
- Leimgruber, P.; Gagnon, J.B.; Wemmer, C.; Kelly, D.S.; Songer, M.A.; Selig, E.R. Fragmentation of Asia’s remaining wildlands: Implications for Asian elephant conservation. Anim. Conserv. 2003, 6, 347–359. [Google Scholar] [CrossRef]
- de Silva, S.; Wu, T.; Nyhus, P.; Weaver, A.; Thieme, A.; Johnson, J.; Wadey, J.; Mossbrucker, A.; Vu, T.; Neang, T.; et al. Land-use change is associated with multi-century loss of elephant ecosystems in Asia. Sci. Rep. 2023, 13, 5996. [Google Scholar] [CrossRef]
- Kalam, T.; Baishya, H.K.; Smith, D. Lethal fence electrocution: A major threat to Asian elephants in Assam, India. SAGE J. 2018, 11. [Google Scholar] [CrossRef]
- Van de Water, A.; Matteson, K. Human-elephant conflict in western Thailand: Socio-economic drivers and potential mitigation strategies. PLoS ONE 2018, 13, e0194736. [Google Scholar] [CrossRef] [PubMed]
- Wongtawan, T. Wild elephant-human conflicts in Thailand: The analysis from the media (2014–2018). In Proceedings of the KUVIC 2019 Conference, Huahin, Thailand, 13–14 June 2019; p. 178. [Google Scholar]
- Williams, C.; Tiwari, S.K.; Goswami, V.R.; de Silva, S.; Kumar, A.; Baskaran, N.; Yoganand, K.; Menon, V. Elephas maximus. IUCN Red List. Threat. Species 2020, T7140A45818198. [Google Scholar] [CrossRef]
- Fernando, P.; Pastorini, J. Range-wide status of Asian elephants. Gajah 2011, 35, 15–20. [Google Scholar] [CrossRef]
- Shaffer, L.J.; Khadka, K.K.; Van Den Hoek, J.; Naithani, K.J. Human-elephant conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 2019, 6, 235. [Google Scholar] [CrossRef]
- Van de Water, A.; King, L.E.; Arkajak, R.; Arkajak, J.; van Doormaal, N.; Ceccarelli, V.; Sluiter, L.; Doornwaard, S.M.; Praet, V.; Owen, D.; et al. Beehive fences as a sustainable local solution to human-elephant conflict in Thailand. Conserv. Sci. Pract. 2020, 2, 10. [Google Scholar] [CrossRef]
- Gross, E.M.; Lahkar, B.P.; Subedi, N.; Nyirenda, V.R.; Lichtenfeld, L.L.; Jakoby, O. Does traditional and advanced guarding reduce crop losses due to wildlife? A comparative analysis from Africa and Asia. J. Nat. Conserv. 2019, 50, 125712. [Google Scholar] [CrossRef]
- Hayward, M.W.; Kerley, G.I.H. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes? Bol. Conserv. 2009, 142, 1–13. [Google Scholar] [CrossRef]
- Pekor, A.; Miller, J.R.B.; Flyman, M.V.; Kasiki, S.; Kesch, M.K.; Miller, S.M.; Uiseb, K.; van der Merve, V.; Lindsey, P.A. Fencing Africa’s protected areas: Costs, benefits, and management issues. Biol. Conserv. 2019, 229, 67–75. [Google Scholar] [CrossRef]
- Kochprapa, P.; Savini, C.; Ngoprasert, D.; Savini, T.; Gale, G.A. Spatio-temporal dynamics of human−elephant conflict in a valley of pineapple plantations. Integr. Conserv. 2023, 2, 95–107. [Google Scholar] [CrossRef]
- Sitati, N.W.; Walpole, M.J. Assessing farm-based measures for mitigating human-elephant conflict in Transmara District, Kenya. Oryx 2006, 40, 279–286. [Google Scholar] [CrossRef]
- Sampson, C.; Rodriguez, S.L.; Leimgruber, P.; Huang, Q.; Tonkyn, D. A quantitative assessment of the indirect impacts of human-elephant conflict. PLoS ONE 2021, 16, e0253784. [Google Scholar] [CrossRef]
- Chiyo, P.I.; Cochrane, E.P.; Naughton, L.; Basuta, G.I. Temporal patterns of crop raiding by elephants: A response to changes in forage quality or crop availability? Afr. J. Ecol. 2005, 43, 48–55. [Google Scholar] [CrossRef]
- Webber, E.C.; Sereivathana, T.; Maltby, M.P.; Lee, P.C. Elephant crop-raiding and human-elephant conflict in Cambodia: Crop selection and seasonal timings of raids. Oryx 2011, 45, 243–251. [Google Scholar] [CrossRef]
- Sukmasuang, R.; Phumpakphan, N.; Deungkae, P.; Chaiyarat, R.; Pla-Ard, M.; Khiowsree, N.; Charaspet, K.; Paansrri, P.; Noowong, J. Review: Status of wild elephant, conflict and conservation actions in Thailand. Biodiversitas 2024, 25, 1479–1498. [Google Scholar] [CrossRef]
- Parr, J.W.K.; Jitvijak, S.; Saranet, S.; Buathong, S. Exploratory co-management interventions in Kuiburi National Park, Central Thailand, including human-elephant conflict mitigation. Int. J. Environ. Sustain. Dev. 2008, 7, 293–310. [Google Scholar] [CrossRef]
- Chiyo, P.I.; Lee, P.C.; Moss, C.J.; Archie, E.A.; Hollister-Smith, J.A.; Alberts, S.C. No risk, no gain: Effects of crop raiding and genetic diversity on body size in male elephants. Behav. Ecol. 2011, 22, 552–558. [Google Scholar] [CrossRef]
- Matsika, T.A.; Adjetey, J.A.; Obopile, M.; Songhurst, A.C.; McCulloch, G.; Stronza, A. Alternative crops as a mitigation measure for elephant crop raiding in the eastern Okavango Panhandle. Pachyderm 2020, 61, 140–152. [Google Scholar]
- Lee, S. In the era of climate change: Moving beyond conventional agriculture in Thailand. Asian J. Agric. Dev. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Sherman, L.A.; Brye, K.R. Soil chemical property changes in response to long-term pineapple cultivation in Costa Rica. Agrosystems Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Tawatsin, A.; Thavara, U.; Siriyasatien, P. Pesticides used in Thailand and toxic effects to human health. Med. Res. Arch. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F. Impacts of agricultural pesticides on terrestrial ecosystems. In Ecological Impacts of Toxic Chemicals; Sánchez-Bayo, F., van den Brink, P.J., Mann, R.M., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011; pp. 63–87. [Google Scholar]
- Gross, E.M.; McRobb, R.; Gross, J. Cultivating alternative crops reduces crop losses due to African elephants. J. Pest Sci. 2016, 89, 497–506. [Google Scholar] [CrossRef]
- Gross, E.M.; Drouet-Hoguet, N.; Subedi, N.; Gross, J. The potential of medicinal and aromatic plants (MAPs) to reduce crop damages by Asian Elephants (Elephas maximus). Crop Prot. 2017, 100, 29–37. [Google Scholar] [CrossRef]
- Henley, M.D.; Cook, R.M.; Bedetti, A.; Wilmot, J.; Roode, A.; Pereira, C.L.; Almeida, J.; Alverca, A. A phased approach to increase human tolerance in elephant corridors to link protected areas in southern Mozambique. Diversity 2023, 15, 85. [Google Scholar] [CrossRef]
- Parker, G.E.; Osborn, F.V. Investigating the potential for chilli (Capsicum annum) to reduce human-wildlife conflict in Zimbabwe. Oryx 2006, 40, 343–346. [Google Scholar] [CrossRef]
- Gross, E.M.; Lahkar, B.P.; Subedi, N.; Nyirenda, V.R.; Lichtenfeld, L.L.; Jakoby, O. Seasonality, crop type and crop phenology influence crop damage by wildlife herbivores in Africa and Asia. Biodivers. Conserv. 2018, 27, 2029–2050. [Google Scholar] [CrossRef]
- Ly, C.; Hung, V.; Anh, N.C.; Bao, H.D.; Quoc, P.D.; Khanh, H.T.; Van Minh, N.; Cam, N.T.; Cuong, C.D. A pilot study of cultivating non-preferred crops to mitigate human-elephant conflict in the buffer zone of Yok Don National Park, Vietnam. Gajah 2020, 51, 4–9. [Google Scholar]
- Kansky, R.; Knight, A.T. Key factors driving attitudes towards large mammals in conflict with humans. Biol. Conserv. 2014, 179, 93–105. [Google Scholar] [CrossRef]
- Noga, S.R.; Kolawole, O.D.; Thakadu, O.; Masunga, G. Small farmers’ adoption behaviour: Uptake of elephant crop-raiding deterrent innovations in the Okavango Delta, Botswana. Afr. J. Sci. Technol. Innov. Dev. 2015, 7, 408–419. [Google Scholar] [CrossRef]
- Vogel, S.M.; Songhurst, A.C.; McCulloch, G.; Stronza, A. Understanding farmers’ reasons behind mitigation decisions is key in supporting their coexistence with wildlife. People Nat. 2022, 4, 1305–1318. [Google Scholar] [CrossRef]
- Hall, J.A.; Fleishman, E. Demonstration as a means to translate conservation science into practice. Conserv. Biol. 2010, 24, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Gunaryadi, D.; Sugiyo; Hedges, S. Community-based human-elephant conflict mitigation: The value of an evidence-based approach in promoting the uptake of effective methods. PLoS ONE 2017, 12, e0173742. [Google Scholar] [CrossRef]
- de Janvry, A.; Sadoulet, E.; Suri, T. Field Experiments in Developing Country Agriculture. Handb. Econ. Field Exp. 2017, 2, 427–466. [Google Scholar] [CrossRef]
- Dedehayir, O.; Ortt, R.J.; Riverola, C.; Miralles, F. Innovators and early adopters in the diffusion of innovations: A literature review. Int. J. Innov. Manag. 2017, 21, 1740010. [Google Scholar] [CrossRef]
- Maynard, L.; Monroe, M.C.; Jacobson, S.K.; Savage, A. Maximizing biodiversity conservation through behavior change strategies. Conserv. Sci. Pract. 2020, 2, e193. [Google Scholar] [CrossRef]
- National Statistical Office of Thailand. Available online: https://www.nso.go.th/nsoweb/index/ (accessed on 26 October 2021).
- Srikrachang, M.; Srikosamatara, S. Elephant crop raiding problems and their solutions at Kui Buri National Park, southwestern Thailand. Nat. Hist. Bull. Siam Soc. 2005, 53, 87–109. [Google Scholar]
- Hemung, B.-O.; Sompholkrang, M.; Wongchai, A.; Chanshotikul, N.; Ueasin, N. Study of the potential of by-products from pineapple processing in Thailand: Review article. Int. J. Health Sci. 2022, 6, 12605–12615. [Google Scholar] [CrossRef]
- Bongsununt, S. Turn Failing Pineapple Farmers into Successful Exporters. The Nation. 2 July 2018. Available online: https://www.nationthailand.com/life/30349171 (accessed on 6 May 2024).
- Baum, F.; MacDougall, C.; Smith, D. Participatory action research. J. Epidemiol. Community Health 2006, 60, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Chansakao, S. Citronella Grass Production for Effectiveness of Volatile Oil. Ph.D. Thesis, Chiang Mai University, Chiang Mai, Thailand, 2008. [Google Scholar]
- Tajidin, N.E.; Ahmad, S.H.; Rosenani, A.B.; Azimah, H.; Munirah, M. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. Afr. J. Biotechnol. 2012, 11, 2685. [Google Scholar] [CrossRef]
- Beegle, K.; Carletto, C.; Himelein, K. Reliability of recall in agricultural data. J. Dev. Econ. 2011, 98, 34–41. [Google Scholar] [CrossRef]
- Bahl, J.R.; Singh, A.K.; Lal, R.K.; Gupta, A.K. High-yielding improved varieties of medicinal and aromatic crops for enhanced income. In New Age Herbals: Resource, Quality and Pharmacognosy; Singh, B., Peter, K.V., Eds.; Springer: Singapore, 2018; pp. 247–265. [Google Scholar] [CrossRef]
- Parikh, J.K.; Desai, M.A. Hydrodistillation of essential oil from Cymbopogon flexuosus. Int. J. Food Eng. 2011, 7, 1–9. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 1 October 2022).
- Wany, A.; Jha, S.; Nigam, V.K.; Pandey, D.M. Chemical analysis and therapeutic uses of citronella oil from Cymbopogon winterianus: A short review. Int. J. Adv. Res. 2013, 1, 504–521. Available online: https://www.researchgate.net/publication/304488601_Chemical_analysis_and_therapeutic_uses_of_citronella_oil_from_Cymbopogon_winterianus_A_short_review (accessed on 1 October 2022).
- de Silva, S.; Ruppert, K.; Knox, J.; Davis, E.O.; Weerathunga, U.S.; Glikman, J.A. Experiences and emotional responses of farming communities living with Asian Elephants in Southern Sri Lanka. Trees For. People 2023, 14, 100441. [Google Scholar] [CrossRef]
- Saif, O.; Kansky, R.; Palash, A.; Kidd, M.; Knight, A.T. Costs of coexistence: Understanding the drivers of tolerance towards Asian elephants Elephas maximus in rural Bangladesh. Oryx 2020, 54, 603–611. [Google Scholar] [CrossRef]
- Malley, G.S.; Gorenflo, L.J. Shifts in the conflict-coexistence continuum: Exploring social-ecological determinants of human-elephant interactions. PLoS ONE 2023, 18, e0274155. [Google Scholar] [CrossRef]
- Nsonsi, F.; Heymans, J.C.; Diamouangana, J.; Breuer, T. Attitudes towards forest elephant conservation around a protected area in northern Congo. Conserv. Soc. 2017, 15, 59. [Google Scholar] [CrossRef]
- Montero Botey, M.; Soliño, M.; Perea, R.; Martínez-Jauregui, M. Let us give voice to local farmers: Preferences for farm-based strategies to enhance human-elephant coexistence in Africa. Animals 2024, 12, 1867. [Google Scholar] [CrossRef]
- Kikon, D.; Barbora, S. The rehabilitation zone: Living with leopards and elephants in Assam. Environ. Plan. E Nat. Space 2021, 4, 1121–1138. [Google Scholar] [CrossRef]
- Mohd-Radzi, N.H.S.; Karuppannan, K.V.; Abdullah-Fauzi, N.A.F.; Mohd-Ridwan, A.R.; Othman, N.; Muhammad Abu Bakar, A.-L.; Gani, M.; Abdul-Razak, M.F.A.; Md-Zain, B.M. Determining the diet of wild Asian elephants (Elephas maximus) at human-elephant conflict areas in Peninsular Malaysia using DNA metabarcoding. Biodivers. Data J. 2022, 10, e89752. [Google Scholar] [CrossRef]
- Bal, P.; Nath, C.D.; Nanaya, K.M.; Kushalappa, C.G.; Garcia, C. Elephants also like coffee: Trends and drivers of human-elephant conflicts in coffee agroforestry landscapes of Kodagu, Western Ghats, India. Environ. Manag. 2011, 47, 789–901. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, V.; Myburgh, W.; Reilly, B. Predicting environmental factors influencing crop raiding by African elephants (Loxodonta africana) in the Luangwa Valley, eastern Zambia. Afr. J. Environ. Sci. Technol. 2012, 6, 391–400. [Google Scholar] [CrossRef]
- Danquah, E.; Oppong, S.K. Food plants of forest elephants and their availability in the Kakum Conservation Area, Ghana. Pachyderm 2006, 40, 52–60. [Google Scholar]
- Dharmarathne, C.; Fernando, C.; Weerasinghe, C.; Corea, R. Project orange elephant is a conflict specific holistic approach to mitigating human-elephant conflict in Sri Lanka. Commun. Biol. 2020, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Nazri, A.; Pebrian, D.E. Analysis of energy consumption in pineapple cultivation in Malaysia: A case study. Pertanika J. Sci. Technol. 2017, 25, 17–28. Available online: https://www.researchgate.net/publication/313609026_Analysis_of_Energy_Consumption_in_Pineapple_Cultivation_in_Malaysia_A_Case_Study (accessed on 1 October 2022).
- Hardman, C.J.; Harrison, D.P.G.; Shaw, P.J.; Nevard, T.D.; Hughes, B.; Potts, S.G.; Norris, K. Supporting local diversity of habitats and species on farmland: A comparison of three wildlife-friendly schemes. J. Appl. Ecol. 2016, 53, 171–180. [Google Scholar] [CrossRef]
- Amekawa, Y.; Hongsibsong, S.; Sawarng, N.; Gebre, G.G. Chili pepper farmers’ pesticide use and residues under Thailand’s Public Good Agricultural Practices standard: A case study in Chiang Mai Province. Collect. FAO Agric. 2023, 13, 1105. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Ogra, M.V. Human–wildlife conflict and gender in protected area borderlands: A case study of costs, perceptions, and vulnerabilities from Uttarakhand (Uttaranchal), India. Geoforum 2008, 39, 1408–1422. [Google Scholar] [CrossRef]
- Nyumba, T.O.; Emenye, O.E.; Leader-Williams, N. Assessing impacts of human-elephant conflict on human wellbeing: An empirical analysis of communities living with elephants around Maasai Mara National Reserve in Kenya. PLoS ONE 2020, 15, e0239545. [Google Scholar] [CrossRef]
- Gross, E.; Jayasinghe, N.; Hilderink-Koopmanns, F.; Brooks, A.; Polet, G. A Future for All—The Need for Human-Wildlife Coexistence; WWF: Gland, Switzerland, 2021; Available online: https://wwfint.awsassets.panda.org/downloads/a_future_for_all___the_need_for_human_willdife_coexistence.pdf (accessed on 1 October 2022).
- Putra, R.E.; Permana, A.D.; Kinasih, I. Application of Asiatic honey bees (Apis cerana) and stingless bees (Trigona laeviceps) as pollinator agents of hot pepper (Capsicum annuum L.) at local Indonesia farm system. Psyche A J. Entemology 2014, 2, 1–5. [Google Scholar] [CrossRef]
- Branco, P.S.; Merkle, J.A.; Pringle, R.M.; King, L.; Long, R.A. An experimental test of community-based strategies for mitigating human-wildlife conflict around protected areas. Conserv. Lett. 2020, 13, e12679. [Google Scholar] [CrossRef]
- Karidozo, M.; Osborn, F.V. Community based conflict mitigation trials: Results of field tests of chilli as an elephant deterrent. J. Biodivers. Endanger. Species 2015, 3, 144. [Google Scholar] [CrossRef]
- Pozo, R.A.; Coulson, T.; McCulloch, G.; Stronza, A.; Songhurst, A. Chilli-briquettes modify elephant temporal behaviour but not numbers. Oryx 2017, 53, 100–108. [Google Scholar] [CrossRef]
Effect | Baseline | Categories | Odds | 95% CI on Odds |
---|---|---|---|---|
Intercept | - | - | 0.01 | (0.00, 0.09) * |
Elephant frequency | 1—Never | 2—Less than once per month | 17.8 | (3.25, 334.05) * |
3—Once per month | 19.92 | (3.52, 377.82) * | ||
4—Once per week | 31.28 | (5.43, 598.12) * | ||
5—Several times per week | 32.36 | (5.63, 618.40) * | ||
6—Nightly | 21.17 | (3.18, 427.92) * | ||
Benefits from elephants | No | Yes | 1.92 | (1.05, 3.57) * |
Age | 1—(18–35) | 2—(36–45) | 2.37 | (0.83, 7.27) |
3—(46–55) | 4.57 | (1.65, 13.78) * | ||
4—(56–65) | 2.6 | (0.89, 8.19) | ||
5—(66+) | 3.21 | (0.81, 13.48) |
Ecological | Economic | Social | ||||||
---|---|---|---|---|---|---|---|---|
Species | Elephant Resilience | Environmental Resilience | Crop Health | Input Requirements | Profit | Labor Investment | Local Familiarity | Total Score (Max 9) |
Lemongrass | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 8.50 |
3.00 | 3.00 | 2.50 | ||||||
Citronella | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 8.17 |
2.67 | 3.00 | 2.50 | ||||||
Chili | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 5.67 |
1.67 | 2.00 | 2.00 | ||||||
Karonda | 3 | 3 | 3 | 1 | 1 | 2 | 1 | 5.50 |
3.00 | 1.00 | 1.50 | ||||||
Mulberry | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 5.17 |
1.67 | 1.50 | 2.00 | ||||||
Lime | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 4.33 |
2.33 | 1.00 | 1.00 | ||||||
Kaffir lime | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3.33 |
1.33 | 1.00 | 1.00 |
Pineapple | Lemongrass | Citronella | |
---|---|---|---|
Investment/loss (per rai/crop cycle) | |||
Planting | 100.9 | 213.1 | 188.5 |
Maintenance | 161.7 | 81.9 | 49.1 |
Elephant deterrents (recurring and non-recurring) | 38.3 | 0.0 | 0.0 |
Harvest | 49.3 | 98.3 | 98.3 |
Elephant-caused crop damage | 38.5 | 28.3 | 27.9 |
Total investment/loss | 388.8 | 421.6 | 363.9 |
Revenue (per rai/crop cycle) | |||
Fruit yield | 413.7 | - | - |
Shoot sales | 2.9 | - | - |
Stalk yield | - | 1490.3 | 989.6 |
Essential oil yield | - | 23.8 | 89.4 |
Total revenue | 416.6 | 1514.0 | 1079.0 |
Profit (per rai/crop cycle) | 27.8 | 1092.5 | 715.1 |
Average crop cycle (months) | 13.3 | 7.0 | 4.0 |
Profit (per rai/month) | 2.1 | 156.1 | 178.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owen, A.; van de Water, A.; Sutthiboriban, N.; Tantipisanuh, N.; Sangthong, S.; Rajbhandari, A.; Matteson, K. The Role of Alternative Crop Cultivation in Promoting Human-Elephant Coexistence: A Multidisciplinary Investigation in Thailand. Diversity 2024, 16, 519. https://doi.org/10.3390/d16090519
Owen A, van de Water A, Sutthiboriban N, Tantipisanuh N, Sangthong S, Rajbhandari A, Matteson K. The Role of Alternative Crop Cultivation in Promoting Human-Elephant Coexistence: A Multidisciplinary Investigation in Thailand. Diversity. 2024; 16(9):519. https://doi.org/10.3390/d16090519
Chicago/Turabian StyleOwen, Ave, Antoinette van de Water, Natsuda Sutthiboriban, Naruemon Tantipisanuh, Samorn Sangthong, Alisha Rajbhandari, and Kevin Matteson. 2024. "The Role of Alternative Crop Cultivation in Promoting Human-Elephant Coexistence: A Multidisciplinary Investigation in Thailand" Diversity 16, no. 9: 519. https://doi.org/10.3390/d16090519
APA StyleOwen, A., van de Water, A., Sutthiboriban, N., Tantipisanuh, N., Sangthong, S., Rajbhandari, A., & Matteson, K. (2024). The Role of Alternative Crop Cultivation in Promoting Human-Elephant Coexistence: A Multidisciplinary Investigation in Thailand. Diversity, 16(9), 519. https://doi.org/10.3390/d16090519