Genetic Variation among Rare Florida Endemic Hymenocallis henryae Populations and the Implication for Conservation and Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SLR Projections
2.3. Tissue Collection
2.4. DNA Isolation and Sequencing
2.5. Genetic Diversity and Clonality Assessment
3. Results
3.1. Population Assessment
3.2. Genetic Analysis
3.3. Clonal Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forester, B.R.; Lama, T. The role of genomics in the future of ESA decision-making. In The Codex of the Endangered Species Act: The Next Fifty Years; Baier, L.E., Organ, J.F., Segal, C.E., Eds.; Rowman & Littlefield: Lanham, MD, USA, 2023; Volume 2, pp. 159–186. [Google Scholar] [CrossRef]
- Noss, R.F.; Cartwright, J.M.; Estes, D.; Witsell, T.; Elliott, G.; Adams, D.; Albrecht, M.; Boyles, R.; Comer, P.; Doffitt, C.; et al. Improving species status assessments under the U.S. Endangered Species Act and implications for multispecies conservation challenges worldwide. Conserv. Biol. 2021, 35, 1715–1724. [Google Scholar] [CrossRef]
- Soule, M.E. What is Conservation Biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. BioScience 1985, 35, 727–734. [Google Scholar] [CrossRef]
- Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesank, C.; Beebee, T.J.C.; Fromentin, J.I.O.H.; Bairlein, F. Ecological response to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Waldvogel, A.M.; Feldmeyer, B.; Rolshausen, G.; Exposito-Alonso, M.; Rellstab, C.; Kofler, R.; Mock, T.; Schmid, K.; Schmitt, I.; Bataillon, T. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 2020, 4, 4–18. [Google Scholar] [CrossRef]
- Soto-Cerda, B.J.; Cloutier, S. Association mapping in plant genomes. In Genetic Diversity in Plants; Çalişkan, M., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Ottewell, K.M.; Bickerton, D.C.; Byrne, M.; Lowe, A.J. Bridging the gap: A genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers. Distrib. 2016, 22, 174–188. [Google Scholar] [CrossRef]
- Doi, H.; Takahashi, M.; Katano, I. Genetic diversity increases regional variation in phenological dates in response to climate change. Glob. Change Biol. 2010, 16, 373–379. [Google Scholar] [CrossRef]
- Markwith, S.H.; Scanlon, M.J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 2007, 94, 151–160. [Google Scholar] [CrossRef]
- Smith, G.L.; Flory, W.S. Studies on Hymenocallis henryae (Amaryllidaceae); Springer and New York Botanical Garden Press Stable: Bronx, NY, USA, 1990; Volume 42, pp. 212–220. [Google Scholar] [CrossRef]
- Pacific Bulb Society. (n.d.). How to Grow Bulbs from Seed. Available online: https://www.pacificbulbsociety.org/pbswiki/index.php/HowToGrowBulbsFromSeed (accessed on 21 March 2024).
- Smith, G.L.; Garland, M.A. Nomenclature of Hymenocallis taxa (Amaryllidaceae) in southeastern United States. Taxon 2023, 52, 805–817. [Google Scholar] [CrossRef]
- Florida Natural Areas Inventory (FNAI). Available online: https://www.fnai.org/publications/data-requests (accessed on 10 November 2020).
- Wunderlin, R.P.; Hansen, B.F. Guide to the Vascular Plants of Florida, 3rd ed.; University Press of Florida: Tampa, FL, USA, 2011; Volume 3, p. 800. [Google Scholar]
- Wunderlin, R.P.; Hansen, B.F.; Franck, A.R.; Essig, F.B. Atlas of Florida Plants; Landry, S.M., Campbell, K.N., Eds.; USF Water Institute, Institute for Systematic Botany, University of South Florida: Tampa, FL, USA, 2024. [Google Scholar]
- Volk, M.I.; Hoctor, T.S.; Nettles, B.B.; Hilsenbeck, R.; Putz, F.E.; Oetting, J. Florida Land Use and Land Cover Change in the Past 100 Years. Florida’s Clim. Changes Var. Impacts 2017, 2, 51–82. [Google Scholar] [CrossRef]
- Noss, R.; Platt, W.; Sorrie, B.; Weakley, A.; Means, D.; Costanza, J.; Peet, R. How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Divers. Distrib. 2015, 21, 236–244. [Google Scholar] [CrossRef]
- Blaustein, R.J. Biodiversity Hotspot: The Florida Panhandle. BioScience 2008, 58, 784–790. [Google Scholar] [CrossRef]
- NatureServe Explorer. Available online: https://explorer.natureserve.org/ (accessed on 12 November 2020).
- Florida Natural Areas Inventory. Available online: https://www.fnai.org/PDFs/FieldGuides/Hymenocallis_henryae.pdf (accessed on 10 April 2023).
- Vogel, M.T. Conservation of the Rare Florida Henry’s Spider Lily (Hymenocallis henryae) Using Genomic Analysis. Master’s Thesis, Miami University, Oxford, OH, USA, December 2022. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=miami1668782065354342 (accessed on 12 May 2023).
- Kral, R. A Report on Some Rare, Threatened, or Endangered Forest-Related Vascular Plants of the South; U.S. Dept. of Agriculture Forest Service Technical Publication R8-TP2: Athens, GA, USA, 1983; p. 1305. [Google Scholar]
- Center for Biological Diversity (CBD). Southeast Aquatic Species Petition. In Petition to List 404 Aquatic, Riparian and Wetland Species from the Southeastern United States as Threatened or Endangered under the Endangered Species Act; CBD: Tucson, Arizona, 2010; pp. 614–615. [Google Scholar]
- 16 U.S. Code § 1531—Congressional Findings and Declaration of Purposes and Policy. Available online: https://www.law.cornell.edu/uscode/text/16/1531 (accessed on 20 July 2023).
- Traub, H.P. Specimen: Hymenocallis Henryae—282—MO—(BC:MO-202275/A:3108358) (BC:MO-202276/A:3108359). Tropicos. 1962. Available online: https://www.tropicos.org/specimen/1784859 (accessed on 24 July 2024).
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service. 2022; p. 111. Available online: https://cdn.oceanservice.noaa.gov/oceanserviceprod/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf (accessed on 5 May 2023).
- Bad Elf. GNSS Surveyor BE-3300GPS; Bad Elf.: West Hartford, CT, USA, 2020. [Google Scholar]
- Kim, C.S.; Lee, C.H.; Shin, J.S.; Chung, Y.S.; Hyung, N.I. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 1997, 25, 1085–1086. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. Qubit 4 Fluorometer (Catalog No. Q33238); Thermo Fisher Scientific: Waltham, MA, USA, 2021. Available online: https://www.thermofisher.com/order/catalog/product/Q33238 (accessed on 5 May 2023).
- SBG/dd-RAD-Seq: Floragenex: Your Partner from DNA to Data. Available online: https://www.floragenex.com/sbg-ddrad-seq (accessed on 24 September 2020).
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.; Bassham, S.; Amores, A.; Cresko, W. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 11, 3124–3140. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; McVean, G. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 5 May 2023).
- Microsoft Corporation. Microsoft Excel. 2018. Available online: https://office.microsoft.com/excel (accessed on 5 May 2023).
- Thioulouse, J.; Dray, S.; Dufour, A.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with Ade4; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Frichot, E.; Francois, O. LEA: An R package for Landscape and Ecological Association studies. Methods Ecol. Evol. 2015, 6, 925–929. Available online: http://membres-timc.imag.fr/Olivier.Francois/lea.html (accessed on 5 May 2023). [CrossRef]
- Knaus, B.J.; Grunwald, N.J. VCFR: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 2017, 17, 44–53. [Google Scholar] [CrossRef]
- Pembleton, L.; Cogan, N.; Forster, J. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 2013, 13, 946–952. [Google Scholar] [CrossRef]
- Willing, E.-M.; Dreyer, C.; van Oosterhout, C. Estimates of Genetic Differentiation Measured by FST Do Not Necessarily Require Large Sample Sizes When Using Many SNP Markers. PLoS ONE 2012, 7, e42649. [Google Scholar] [CrossRef]
- Esri Inc. ArcGIS Pro (Version 3.0). Esri Inc. 2022. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 5 May 2023).
- Kamvar, Z.N.; Brooks, J.C.; Grünwald, N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 2015, 6, 208. [Google Scholar] [CrossRef]
- Amor, M.D.; Johnson, J.C.; James, E.A. Identification of clonemates and genetic lineages using next-generation sequencing (ddRADseq) guides conservation of a rare species, Bossiaea vombata (Fabaceae). Perspect. Plant Ecol. Evol. Syst. 2020, 45, 125544. [Google Scholar] [CrossRef]
- Schliep; Klaus; Potts, J.A.; Morrison, A.D.; Grimm, W.G. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 2017, 8, 1212–1220. [Google Scholar] [CrossRef]
- Menges, E.; Dolan, R.; Yahr, R.; Gordon, D. Comparative genetics of seven plants endemic to Florida’s Lake Wales Ridge. Scholarsh. Prof. Work. LAS 2001, 66, 98–114. [Google Scholar]
- Gitzendanner, M.A.; Soltis, P.S. Patterns of genetic variation in rare and widespread plant congeners. Am. Jor. Bot. 2000, 87, 783–792. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Estimating genomic diversity and population differentiation—An empirical, of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Leimu, R.; Mutikainen, P.; Koricheva, J.; Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 2006, 94, 942–952. [Google Scholar] [CrossRef]
- Honnay, O.; Jacquemyn, H. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv. Biol. 2007, 21, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Willi, Y.; Kristensen, T.N.; Sgrò, C.M.; Weeks, A.R.; Ørsted, M.; Hoffmann, A.A. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc. Natl. Acad. Sci. USA 2022, 119, e2105076119. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Morris, A.B.; McLachlan, J.S.; Manos, P.S.; Soltis, P.S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 2006, 14, 671–688. [Google Scholar] [CrossRef]
- Stephens, J.D.; Santos, S.R.; Folkerts, D.R. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: Implications for conservation. PLoS ONE 2011, 6, e22658. [Google Scholar] [CrossRef]
- Meerow, A.W.; Gardner, E.M.; Nakamura, K. Phylogenomics of the Andean tetraploid clade of the American Amaryllidaceae (subfamily Amaryllidoideae): Unlocking a polyploid generic radiation abetted by continental geodynamics. Front. Plant Sci. 2020, 11, 582422. [Google Scholar] [CrossRef]
- Watts, W.A. Late-Quanternary vegetation history at White Pond on the inner coastal plain of South Carolina. Quat. Res. 1980, 13, 187–199. [Google Scholar] [CrossRef]
- Schmidt, K.; Jensen, K. Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am. J. Bot. 2000, 87, 678–689. [Google Scholar] [CrossRef]
- Tero, N.; Aspi, J.; Siikamäki, P.; Jäkäläniemi, A.; Tuomi, J. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol. Ecol. 2003, 12, 2073–2085. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; Corbett, C.W.; Thixton-Nolan, H.L. A lack of population structure characterizes the invasive Lonicera japonica in West Virginia and across eastern North America. J. Torrey Bot Soc. 2023, 150, 455–466. [Google Scholar] [CrossRef]
- Eserman-Campbell, L. Evaluating the conservation genetics of Florida torreya. Synecology 2022, 4, 8–9. [Google Scholar]
- Ye, W.H.J.; Li, H.L.; Cao, H.L.; Ge, X.J. Genetic uniformity of Alternanthera philoxeroides in South China. Weed Res. 2003, 43, 297–302. [Google Scholar] [CrossRef]
- Westergaard, K.B.; Alsos, I.G.; Engelskjøn, T.; Flatberg, K.I.; Brochmann, C. Trans-Atlantic genetic uniformity in the rare snowbed sedge Carex rufina. Conserv. Genet. 2011, 12, 1367–1371. [Google Scholar] [CrossRef]
- Duchoslav, M.; Staňková, H. Population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 2015, 50, 123–136. [Google Scholar] [CrossRef]
- Gaikwad, S.P.; Garad, K.U.; Gore, R.D. Crinum solapurense (Amaryllidaceae), a new species from Maharashtra, India. Kew Bull. 2014, 69, 9505. [Google Scholar] [CrossRef]
- Arroyo, J.; Dafni, A. Variations in Habitat, Season, Flower Traits and Pollinators in Dimorphic Narcissus tazetta L. (Amaryllidaceae) in Israel. New Phytol. 1995, 129, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Hymenocallis occidentalis var. Occidentalis—Flora of North America. Available online: http://beta.floranorthamerica.org/Hymenocallis_occidentalis_var._occidentalis (accessed on 5 December 2020).
- Center for Plant Conservation. CPC Best Plant Conservation Practices to Support Species Survival in the Wild; Center for Plant Conservation: Escondido, CA, USA, 2019. [Google Scholar]
Site and County | Population | Samples Collected | Clumps Observed | HO | HE | FIS |
---|---|---|---|---|---|---|
Apalachicola National | ANF1 | 14 | 222 | 0.052 | 0.091 | 0.342 |
Forest, Liberty | ANF2 | 13 | 543 | 0.065 | 0.090 | 0.210 |
Nokuse Plantation, Walton | NP1 | 1 | 3 | 0.0579 | n.a. 2 | n.a. |
NP2 | 21 | 600+ | 0.0560 | 0.0891 | 0.284 | |
Panama City, Bay | PC1 | 6 | 13 | 0.0366 | 0.0934 | 0.419 |
PC2 | 2 | 8 | 0.0591 | 0.0741 | 0.136 | |
PC3 | 2 | 2 | 0.0643 | 0.0874 | 0.186 | |
PC4 | 2 | 5 | 0.0573 | 0.0919 | 0.217 | |
St. Joseph’s Bay Buffer | SJSBP1 | 20 | 39 | 0.0597 | 0.09 | 0.269 |
Preserve, Gulf | SJSBP2 | 27 | 7 | 0.0562 | 0.0915 | 0.324 |
Tate’s Hell State Forest, | THSF1 | 12 | 358 | 0.0615 | 0.086 | 0.215 |
Liberty | THSF2 | 14 | 450 | 0.0587 | 0.0853 | 0.236 |
THSF3 | 3 | 5 | 0.0728 | 0.0882 | 0.068 | |
Tyndall Air Force Base, | Tyndall2 | 12 | 75 | 0.0607 | 0.0890 | 0.234 |
Bay | Tyndall3 | 2 | 7 | 0.0685 | 0.0858 | 0.119 |
Tyndall4 | 19 | 150 | 0.0579 | 0.0916 | 0.293 | |
Walton County, Walton | Walton | 9 | 12 | 0.0399 | 0.0934 | 0.431 |
Apalachicola River | ARWEA1 | 15 | 30 | 0.0513 | 0.0866 | 0.338 |
Wildlife Environmental | ARWEA2 | 1 | 1 | 0.0667 | n.a. | n.a. |
Area, Franklin | ||||||
Total | 19 1 | 196 | 2530 | 0.058 | 0.088 | 0.254 |
ANF1 | Walton1 | Tyndall4 | Tyndall2 | THSF2 | THSF1 | SJSBP2 | SJSBP1 | PC1 | NP2 | ARWEA1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
ANF2 | 0.008 | 0.055 | 0.014 | 0.017 | 0.021 | 0.013 | 0.016 | 0.017 | 0.067 | 0.038 | 0.019 |
ARWEA1 | 0.012 | 0.056 | 0.017 | 0.023 | 0.024 | 0.016 | 0.022 | 0.033 | 0.056 | 0.042 | |
NP2 | 0.023 | 0.078 | 0.03 | 0.035 | 0.032 | 0.022 | 0.031 | 0.045 | 0.070 | ||
PC1 | 0.045 | 0.098 | 0.061 | 0.074 | 0.079 | 0.075 | 0.056 | 0.078 | |||
SJSBP1 | 0.018 | 0.060 | 0.025 | 0.025 | 0.027 | 0.018 | 0.022 | ||||
SJSBP2 | 0.013 | 0.047 | 0.016 | 0.024 | 0.018 | 0.006 | |||||
THSF1 | 0.0 | 0.056 | 0.011 | 0.019 | 0.004 | ||||||
THSF2 | 0.018 | 0.064 | 0.018 | 0.029 | |||||||
Tyndall2 | 0.013 | 0.055 | 0.017 | ||||||||
Tyndall4 | 0.010 | 0.041 | |||||||||
Walton1 | 0.045 | ||||||||||
Average | 0.017 | 0.055 | 0.022 | 0.028 | 0.028 | 0.020 | 0.023 | 0.031 | 0.063 | 0.037 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, M.T.; Moore, R.C.; Negrón-Ortiz, V. Genetic Variation among Rare Florida Endemic Hymenocallis henryae Populations and the Implication for Conservation and Management. Diversity 2024, 16, 465. https://doi.org/10.3390/d16080465
Vogel MT, Moore RC, Negrón-Ortiz V. Genetic Variation among Rare Florida Endemic Hymenocallis henryae Populations and the Implication for Conservation and Management. Diversity. 2024; 16(8):465. https://doi.org/10.3390/d16080465
Chicago/Turabian StyleVogel, Maria Therese, Richard C. Moore, and Vivian Negrón-Ortiz. 2024. "Genetic Variation among Rare Florida Endemic Hymenocallis henryae Populations and the Implication for Conservation and Management" Diversity 16, no. 8: 465. https://doi.org/10.3390/d16080465
APA StyleVogel, M. T., Moore, R. C., & Negrón-Ortiz, V. (2024). Genetic Variation among Rare Florida Endemic Hymenocallis henryae Populations and the Implication for Conservation and Management. Diversity, 16(8), 465. https://doi.org/10.3390/d16080465