Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background to This Study and Species Selection
2.2. Experimental Procedure
2.3. Soil Sample Collection and Chemical Analyses
2.4. Data Analyses
3. Results
3.1. Nutrient Analyses
3.1.1. Potassium
3.1.2. Phosphorus
3.1.3. Nitrogen
3.1.4. Organic Matter
3.2. Rate of Dung Removal by Dung Beetles
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benayas, J.M.R.; Bullock, J.M. Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 2012, 15, 883–899. [Google Scholar] [CrossRef]
- Tun, K.; Shrestha, R.; Datta, A. Assessment of land degradation and its impact on crop production in the Dry Zone of Myanmar. Int. J. Sustain. Dev. World Ecol. 2015, 22, 533–544. [Google Scholar] [CrossRef]
- Brussaard, L.; Hijdra, R.D.W. Some effects of scarab beetles in sandy soils of the Netherlands. Geoderma 1986, 37, 325–330. [Google Scholar] [CrossRef]
- Brussaard, L.; Runia, L.T. Recent and ancient traces of scarab beetle activity in sandy soils of the Netherlands. Geoderma 1984, 34, 229–250. [Google Scholar] [CrossRef]
- Halffter, G.; Edmonds, W.D. The Nesting Behavior of Dung Beetles (Scarabaeinae). An Ecological and Evolutive Approach; Instituto de Ecología: México, Mexico, 1982; 176p. [Google Scholar]
- Manning, P.; Slade, E.M.; Beynon, S.A.; Lewis, O.T. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric. Ecosyst. Environ. 2016, 218, 87–94. [Google Scholar] [CrossRef]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- Tixier, T.; Bloor, J.M.G.; Lumaret, J.-P. Species-specific effects of dung beetle abundance on dung removal and leaf litter decomposition. Acta Oecol. 2015, 69, 31–34. [Google Scholar] [CrossRef]
- Holter, P.; Scholtz, C.H. What do dung beetles eat? Ecol. Entomol. 2007, 32, 690–697. [Google Scholar] [CrossRef]
- Yamada, D.; Imura, O.; Shi, K.; Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Sci. 2007, 53, 121–129. [Google Scholar] [CrossRef]
- Bang, H.S.; Lee, J.-H.; Kwon, O.S.; Na, Y.E.; Jang, Y.S.; Kim, W.H. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil Ecol. 2005, 29, 165–171. [Google Scholar] [CrossRef]
- Guglielmone, A.A.; Gimeno, E.; Idiart, J.; Fisher, W.F.; Volpogni, M.M.; Quaino, O.; Anziani, O.S.; Flores, S.G.; Warnke, O. Skin lesions and cattle hide damage from Haematobia irritans infestations in cattle. Med. Vet. Entomol. 1999, 13, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Byford, R.L.; Craig, M.E.; Crosby, B.L. A review of ectoparasites and their effect on cattle production. J. Anim. Sci. 1992, 70, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.N.; Lopaticki, G.; Barnett, K.; Facey, S.L.; Powell, J.R.; Hartley, S.E. An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Funct. Ecol. 2016, 30, 894–902. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Lumaret, J.-P.; Kadiri, N.; Martínez-M, I. The global decline of dung beetles. In Imperiled: The Encyclopedia of Conservation; DellaSala, D.A., Goldstein, M.I., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; Volume 3, pp. 553–562. [Google Scholar]
- Nichols, E.; Larsen, T.; Spector, S.; Davis, A.L.; Escobar, F.; Favila, M.; Vulinec, K. Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and meta-analysis. Biol. Conserv. 2007, 137, 1–19. [Google Scholar] [CrossRef]
- Numa, C.; Tonelli, M.; Lobo, J.M.; Verdú, J.R.; Lumaret, J.-P.; Sánchez-Piñero, F.; Ruiz, J.L.; Dellacasa, M.; Ziani, S.; Arriaga, A.; et al. The Conservation Status and Distribution of Mediterranean Dung Beetles; Monographic Series: IUCN Red List of Threatened Species—Regional Assessment; IUCN: Gland, Malaga, 2020; xii; pp. 1–58. [Google Scholar] [CrossRef]
- Verdú, J.R.; Lobo, J.M.; Sánchez-Piñero, F.; Gallego, B.; Numa, C.; Lumaret, J.-P.; Cortez, V.; Ortiz, A.J.; Tonelli, M.; García-Teba, J.P.; et al. Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Sci. Total Environ. 2018, 618, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Perrin, W.; Moretti, M.; Vergnes, A.; Borcard, D.; Jay-Robert, P. Response of dung beetle assemblages to grazing intensity in two distinct bioclimatic contexts. Agric. Ecosyst. Environ. 2020, 289, 106740. [Google Scholar] [CrossRef]
- Lumaret, J.-P.; Kadiri, N.; Bertrand, M. Changes in resources: Consequences for the dynamics of dung beetle communities. J. Appl. Ecol. 1992, 29, 349–356. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Change Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Verdú, J.R.; Zunino, M.E. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub- mountainous landscape of Central Italy. PeerJ 2017, 5, e2780. [Google Scholar] [CrossRef] [PubMed]
- Verdú, J.R.; Cortez, V.; Ortiz, A.J.; González-Rodriguez, E.; Martinez-Pinna, J.; Lumaret, J.-P.; Lobo, J.M.; Numa, C.; Sánchez-Piñero, F. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci. Rep. 2015, 5, 13912. [Google Scholar] [CrossRef]
- Anderson, D.J.; Berson, J.D.; Didham, R.K.; Simmons, L.W.; Evans, T.A. Dung beetles increase plant growth: A meta-analysis. Proc. R. Soc. B 2024, 291, 20232885. [Google Scholar] [CrossRef] [PubMed]
- Hajji, H.; Janati-Idrissi, A.; Taybi, A.; Caron, V.; Lumaret, J.-P.; Mabrouki, Y. Seasonal variation in the organization of dung beetle communities in the Moroccan Middle Atlas (Coleoptera: Scarabaeoidea). Diversity 2023, 15, 1138. [Google Scholar] [CrossRef]
- The Dung Beetle Ecosystem Engineers (DBEE) Research Project. Available online: https://www.dungbeetles.com.au/ (accessed on 16 July 2024).
- Hajji, H.; Janati-Idrissi, A.; El Fattouhi, Y.; El Ouaryaghli, A.; Caron, V.; Lumaret, J.-P. Light orientation in the ball-rolling dung beetle, Gymnopleurus sturmi (MacLeay 1821), in Morocco (Coleoptera: Scarabaeinae: Gymnopleurini). Ann. Soc. Entomol. France (N.S.) 2023, 59, 406–416. [Google Scholar] [CrossRef]
- Barragán, F.; Douterlungne, D.; Ramírez-Hernández, A.; Gelviz-Gelvez, S.M.; Guzmán Miranda, A.V.; Rodas Ortíz, J.P. The rolling dung master: An ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J. Arid Environ. 2022, 197, 104673. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Book Series: Agronomy Monographs; American Society of Agronomy, Inc.; Soil Science Society of America, Inc. (Publ.): Madison, WI, USA, 1982; Chapter 24; pp. 403–430. [Google Scholar]
- CB3644EN/1/04.21; Standard Operating Procedure for Soil Available Phosphorus—Olsen Method. FAO: Rome, Italy, 2021.
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; García Asuero, A. An overview of the Kjeldahl method of Nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- ITW Reagents. Nitrogen Determination by Kjeldahl Method. PanReac AppliChem. 2018. Available online: https://www.itwreagents.com/uploads/20180114/A173_EN.pdf (accessed on 22 April 2022).
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R, 2nd ed.; Springer International Publ.: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nervo, B.; Caprio, E.; Celi, L.; Lonati, M.; Lombardi, G.; Falsone, G.; Iussig, G.; Palestrini, C.; Said-Pullicino, D.; Rolando, A. Ecological functions provided by dung beetles are interlinked across space and time: Evidence from 15 N isotope tracing. Ecology 2017, 98, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Slade, E.M.; Mann, D.; Villanueva, J.; Lewis, O. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 2007, 76, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Kaartinen, R.; Hardwick, B.; Roslin, T. Using citizen scientists to measure an ecosystem service nationwide. Ecology 2013, 94, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Nervo, B.; Tocco, C.; Caprio, E.; Palestrini, C.; Rolando, A. The effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 2014, 9, e107699. [Google Scholar] [CrossRef] [PubMed]
- Gebert, F.; Steffan-Dewenter, I.; Kronbach, P.; Peters, M.K. The role of diversity, body size and climate in dung removal: A correlative and experimental approach. J. Anim. Ecol. 2022, 91, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- De Castro-Arrazola, I.; Andrew, N.R.; Berg, M.P.; Curtsdotter, A.; Lumaret, J.-P.; Menéndez, R.; Moretti, M.; Nervo, B.; Nichols, E.S.; Sánchez-Piñero, F.; et al. Trait-based framework for dung beetle functional ecology. J. Anim. Ecol. 2023, 92, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Verdú, J.; Zunino, M. Effects of the progressive abandonment of grazing on dung beetle biodiversity: Body size matters. Biodivers. Conserv. 2018, 27, 189–204. [Google Scholar] [CrossRef]
- Noriega, J.A.; Hortal, J.; deCastro-Arrazola, I.; Alves-Martins, F.; Ortega, J.C.G.; Bini, L.M.; Andrew, N.R.; Arellano, L.; Beynon, S.; Davis, A.L.V.; et al. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat. Commun. 2023, 14, 8070. [Google Scholar] [CrossRef] [PubMed]
- Breymeyer, A.; Jakubczyk, H.; Olechowicz, E. Influence of coprophagous arthropods on microorganisms in sheep faeces. Laboratory investigation. Bull. Pol. Acad. Sci. 1975, 3, 257–262. [Google Scholar]
- Bertone, M.A.; Green, J.T.; Washburn, S.P.; Poore, M.H.; Watson, D.W. The contribution of tunneling dung beetles to pasture soil nutrition. Forage Grazinglands 2006, 4, 1–12. [Google Scholar] [CrossRef]
- Stanbrook, R.; Harris, E.; Jones, M.; Wheater, C.P. The effect of dung beetle size on soil nutrient mobilization in an Afrotropical Forest. Insects 2021, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.B.; Aranibar, J.N.; Serrano, A.M.; Chacoff, N.P.; Vázquez, D.P. Dung beetles and nutrient cycling in a dryland environment. Catena 2019, 179, 66–73. [Google Scholar] [CrossRef]
- Lastro, E. Dung Beetles (Coleoptera: Scarabaeidae and Geotrupidae) in North Carolina Pasture Ecosystem. Master’s Thesis, Entomology, North Carolina State University, Raleigh, NC, USA, 2006. [Google Scholar]
Species | Dung Relocation Behavior | Body Length | Activity Period |
---|---|---|---|
Gymnopleurus sturmi | Roller | 8–18 | Spring-summer |
Onthophagus vacca | Tunneler | 7–13 | Spring |
Onthophagus marginalis subsp. andalusicus | Tunneler | 6–12 | Spring |
Euonthophagus crocatus | Tunneler | 6–12 | Spring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajji, H.; Janati-Idrissi, A.; Taybi, A.F.; Lumaret, J.-P.; Mabrouki, Y. Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions. Diversity 2024, 16, 462. https://doi.org/10.3390/d16080462
Hajji H, Janati-Idrissi A, Taybi AF, Lumaret J-P, Mabrouki Y. Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions. Diversity. 2024; 16(8):462. https://doi.org/10.3390/d16080462
Chicago/Turabian StyleHajji, Hasnae, Abdellatif Janati-Idrissi, Abdelkhaleq Fouzi Taybi, Jean-Pierre Lumaret, and Youness Mabrouki. 2024. "Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions" Diversity 16, no. 8: 462. https://doi.org/10.3390/d16080462
APA StyleHajji, H., Janati-Idrissi, A., Taybi, A. F., Lumaret, J. -P., & Mabrouki, Y. (2024). Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions. Diversity, 16(8), 462. https://doi.org/10.3390/d16080462