The Northern Red Sea (Shushah Island) Coral Health Inferred from Benthic Foraminifers
Abstract
:1. Introduction
2. Study Area and Materials and Methods
- Large benthic foraminifers (symbiont-bearing taxa) represent low-nutrient environments where algal symbiosis is advantageous [29];
- Stress-tolerant/opportunistic taxa represent oxygen-depleted waters with a terrestrial nutrient source (i.e., riverine input) and euryhaline conditions. In coral reefs, this group is only a minor component [30];
- FI < 2 indicate ecological conditions unfavorable for calcifying organisms that host algal endosymbionts (and therefore not conducive to reef growth);
- 2 < FI < 4 indicate marginal conditions for coral growth representing environmental change and/or unsuitable for recovery;
- FI > 4 indicate favorable ecological conditions for calcifying organisms that host algal endosymbionts that support reef growth.
3. Results and Discussion
3.1. General Functional Group Assessment
- F02: Insufficient number of individuals per gram. Replicate analysis needed.
- F03: The major functional group comprises symbiont-bearing taxa (Table 2) corresponding to 57.5% of the total number of specimens. This group indicates nutrient-depleted waters.
- F04: The major functional group comprises heterotrophic smaller taxa (Table 2) corresponding to 62.5% of the total number of specimens pointing to increased nutrient flow to the sampling stations.
- F05: Similar to F04, the major functional group comprises heterotrophic smaller taxa (Table 2) corresponding to 49% of the total number of specimens. This group indicates nutrient input to the sampling stations.
- F06: The major functional group comprises heterotrophic smaller taxa (Table 2) corresponding to >68% of the total number of specimens.
- F07: The major functional group comprises symbiont-bearing taxa (Table 2) corresponding to >60% of the total number of specimens. This percentage is the highest number for symbiont-bearing taxa in the sample set.
- F08: The major functional group comprises symbiont-bearing taxa (Table 2) corresponding to >54% of the total number of specimens pointing to a lowered nutrient supply.
- F09: Insufficient number of individuals per gram. Replicate analysis needed.
- F10: The major functional group comprises heterotrophic smaller taxa (Table 2) corresponding to 43.7% of the total number of specimens. However, symbiont-bearing taxa represent 42.5% of the total assemblage. Hence, this station may point to an equilibrium state between the oxygen content and nutrient supply.
- F11: The major functional group comprises symbiont-bearing taxa (Table 2) corresponding to 46.6% of the total number of specimens. Similar to F11, heterotrophic smaller taxa represent 45.3% of the total assemblage and thus a similar equilibrium state between the oxygen content and nutrient supply may be considered.
3.2. First Insights into Coral Reef Health of Shushah Island
3.3. Intense Bioerosion on Foraminifers
4. Concluding Remarks
- (1)
- At present day, Shushah Island water quality in general is conducive to coral growth.
- (2)
- Stations with marginal conditions and those for which FI assessment was not possible need to be reanalyzed and monitored.
- (3)
- Continuous monitoring and sampling, including the simultaneous acquisition of temperature/salinity/nutrient/oxygen data, is necessary to accurately assess the relationship of foraminiferal functional groups to the ambient water parameters.
- (4)
- The underlying reasons for foraminifer bioerosion in the Red Sea should be studied carefully by collecting living samples accompanied by (bio)geochemical analysis.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- Chaidez, V.; Dreano, D.; Agusti, S.; Duarte, C.M.; Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 2017, 7, 8144. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Hammerman, N.M.; Pandolfi, J.M.; Duarte, C.M.; Agusti, S. Influence of global warming and industrialization on coral reefs: A 600-year record of elemental changes in the Eastern Red Sea. Sci. Total Environ. 2024, 914, 169984. [Google Scholar] [CrossRef]
- Permanent Delegation of the Kingdom of Saudi Arabia. Coral Reefs of the Gulf of Aqaba and the Red Sea in the Kingdom of Saudi Arabia. UNESCO World Heritage Convention. 2024. Available online: https://whc.unesco.org/en/tentativelists/6701/ (accessed on 31 May 2024).
- Intergovernmental Panel on Climate Change (IPCC). Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; ISBN 9781009325844. [Google Scholar]
- Sofianos, S.S.; Johns, W.E.; Murray, S.P. Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1323–1340. [Google Scholar] [CrossRef]
- Liu, X.; Yao, F. Relationship of the Warming of Red Sea Surface Water over 140 Years with External Heat Elements. J. Mar. Sci. Eng. 2022, 10, 846. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Neff, U.; Mudelsee, M.; Mangini, A.; Kramers, J.; Matter, A. Holocene Records of Rainfall Variation and Associated ITCZ Migration from Stalagmites from Northern and Southern Oman. In The Hadley Circulation: Present, Past and Future; Diaz, H.F., Bradley, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 259–287. ISBN 978-1-4020-2944-8. [Google Scholar]
- DiBattista, J.D.; Howard Choat, J.; Gaither, M.R.; Hobbs, J.P.A.; Lozano-Cortés, D.F.; Myers, R.F.; Paulay, G.; Rocha, L.A.; Toonen, R.J.; Westneat, M.W.; et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 2016, 43, 13–30. [Google Scholar] [CrossRef]
- Fine, M.; Cinar, M.; Voolstra, C.R.; Safa, A.; Rinkevich, B.; Laffoley, D.; Hilmi, N.; Allemand, D. Coral reefs of the Red Sea—Challenges and potential solutions. Reg. Stud. Mar. Sci. 2019, 25, 100498. [Google Scholar] [CrossRef]
- Cantin, N.E.; Cohen, A.L.; Karnauskas, K.B.; Tarrant, A.M.; McCorkle, D.C. Ocean warming slows coral growth in the central Red Sea. Science 2010, 329, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Monroe, A.A.; Ziegler, M.; Roik, A.; Röthig, T.; Hardenstine, R.S.; Emms, M.A.; Jensen, T.; Voolstra, C.R.; Berumen, M.L. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 2018, 13, e0195814. [Google Scholar] [CrossRef] [PubMed]
- Furby, K.A.; Bouwmeester, J.; Berumen, M.L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 2013, 32, 505–513. [Google Scholar] [CrossRef]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 2018, 28, 2570–2580.e6. [Google Scholar] [CrossRef]
- Osman, E.O.; Smith, D.J.; Ziegler, M.; Kürten, B.; Conrad, C.; El-Haddad, K.M.; Voolstra, C.R.; Suggett, D.J. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 2018, 24, e474–e484. [Google Scholar] [CrossRef] [PubMed]
- Eladawy, A.; Nakamura, T.; Shaltout, M.; Mohammed, A.; Nadaoka, K.; Fox, M.D.; Osman, E.O. Appraisal of coral bleaching thresholds and thermal projections for the northern Red Sea refugia. Front. Mar. Sci. 2022, 9, 938454. [Google Scholar] [CrossRef]
- Lin, Y.J.; Heinle, M.J.; Al-Musabeh, A.; Gopalan, J.; Vasanthi, T.D.; Panickan, P.; Hamade, T.; Pulido, B.; Joydas, T.V.; Shepherd, B. Coral reefs in the northeastern Saudi Arabian Red Sea are resilient to mass coral mortality events. Mar. Pollut. Bull. 2023, 197, 115693. [Google Scholar] [CrossRef]
- Narayan, G.R.; Reymond, C.E.; Stuhr, M.; Doo, S.; Schmidt, C.; Mann, T.; Westphal, H. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology 2022, 69, 121–161. [Google Scholar] [CrossRef]
- Hallock, P.; Lidz, B.H.; Cockey-Burkhard, E.M.; Donnelly, K.B. Foraminifera as bioindicators in coral reef assessment and monitoring: The foram index. Environ. Monit. Assess. 2003, 81, 221–238. [Google Scholar] [CrossRef]
- Pisapia, C.; El Kateb, A.; Hallock, P.; Spezzaferri, S. Assessing coral reef health in the North Ari Atoll (Maldives) using the FoRAM Index. Mar. Micropaleontol. 2017, 133, 50–57. [Google Scholar] [CrossRef]
- Carnahan, E.A.; Hoare, A.M.; Hallock, P.; Lidz, B.H.; Reich, C.D. Foraminiferal assemblages in Biscayne Bay, Florida, USA: Responses to urban and agricultural influence in a subtropical estuary. Mar. Pollut. Bull. 2009, 59, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Vicens, G.; Khokhlova, A.; Sebastián-Pastor, T. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. J. Foraminifer. Res. 2014, 44, 325–339. [Google Scholar] [CrossRef]
- El Kateb, A.; Stalder, C.; Martínez-Colón, M.; Mateu-Vicens, G.; Francescangeli, F.; Coletti, G.; Stainbank, S.; Spezzaferri, S. Foraminiferal-based biotic indices to assess the ecological quality status of the Gulf of Gabes (Tunisia): Present limitations and future perspectives. Ecol. Indic. 2020, 111, 105962. [Google Scholar] [CrossRef]
- Eichler, P.P.B.; de Moura, D.S. Symbiont-bearing foraminifera as health proxy in coral reefs in the equatorial margin of Brazil. Environ. Sci. Pollut. Res. 2020, 27, 13637–13661. [Google Scholar] [CrossRef]
- Schueth, J.D.; Frank, T.D. Reef foraminifera as bioindicators of coral reef health: Low Isles Reef, Northern Great Barrier Reef, Australia. J. Foraminifer. Res. 2008, 38, 11–22. [Google Scholar] [CrossRef]
- Uthicke, S.; Thompson, A.; Schaffelke, B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 2010, 29, 209–225. [Google Scholar] [CrossRef]
- Prazeres, M.; Martínez-Colón, M.; Hallock, P. Foraminifera as bioindicators of water quality: The FoRAM Index revisited. Environ. Pollut. 2020, 257, 113612. [Google Scholar] [CrossRef] [PubMed]
- Hottinger, L.; Halicz, E.; Reiss, Z. Recent Foraminiferida from the Gulf of Aqaba, Red Sea; Pleničar, M., Ed.; Slovenska Akademija Znanosti in Umetnosti: Ljubljana, Slovenia, 1993; ISBN 2013206534. [Google Scholar]
- Hallock, P. Larger Foraminifera as Indicators of Coral-Reef Vitality. In Environmental Micropaleontology: The Application of Microfossils to Environmental Geology; Martin, R.E., Ed.; Springer: Boston, MA, USA, 2000; pp. 121–150. ISBN 978-1-4615-4167-7. [Google Scholar]
- Hallock, P. The FoRAM Index revisited: Uses, challenges, and limitations. In Proceedings of the 12th International Coral Reef Symposium, Cairns, QLD, Australia, 9–13 July 2012; pp. 9–13. [Google Scholar]
- Schlitzer, R. Ocean Data View; Alfred Wegener Institute for Polar and Marine Research (AWI): Bremerhaven, Germany, 2018. [Google Scholar]
- Abu-Zied, R.H.; Bantan, R.A.; Basaham, A.S.; El Mamoney, M.H.; Al-Washmi, H.A. Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. J. Foraminifer. Res. 2011, 41, 349–362. [Google Scholar] [CrossRef]
- BadrElDin, A.M.; Makbool, M.M.A.; ElSabrouti, M.A.; Hallock, P. Distribution and Diversity of Benthic Foraminifera in the Coastal Area of Al-Bawadi Island, Southern Red Sea. J. Foraminifer. Res. 2022, 52, 264–277. [Google Scholar] [CrossRef]
- Al-Kahtany, K.; Youssef, M.; El-Sorogy, A.; Al-Kahtany, F. Benthic foraminifera as bioindicators of environmental quality of Dammam Al-Jubail area, Arabian Gulf, Saudi Arabia. Arab. J. Geosci. 2020, 13, 427. [Google Scholar] [CrossRef]
- Cockey, E.; Hallock, P.; Lidz, B.H. Decadal-scale changes in benthic foraminiferal assemblages off Key Largo, Florida. Coral Reefs 1996, 15, 237–248. [Google Scholar] [CrossRef]
- Triantaphyllou, G.; Yao, F.; Petihakis, G.; Tsiaras, K.P.; Raitsos, D.E.; Hoteit, I. Exploring the Red Sea Seasonal Ecosystem Functioning Using a Three Dimensional Biophysical Model. J. Geophys. Res. Ocean 2014, 119, 1791–1811. [Google Scholar] [CrossRef]
- Churchill, J.H.; Bower, A.S.; McCorkle, D.C.; Abualnaja, Y. The transport of nutrient-rich Indian ocean water through the red sea and into coastal reef systems. J. Mar. Res. 2014, 72, 165–181. [Google Scholar] [CrossRef]
- Blanckaert, A.C.A.; Omanović, D.; Fine, M.; Grover, R.; Ferrier-Pagès, C. Desert dust deposition supplies essential bioelements to Red Sea corals. Glob. Chang. Biol. 2022, 28, 2341–2359. [Google Scholar] [CrossRef]
- Biscéré, T.; Ferrier-Pagès, C.; Gilbert, A.; Pichler, T.; Houlbrèque, F. Evidence for mitigation of coral bleaching by manganese. Sci. Rep. 2018, 8, 16789. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, A.; Buosi, C.; Zuddas, P.; De Giudici, G. Bioerosion by microbial euendoliths in benthic foraminifera from heavy metal-polluted coastal environments of Portovesme (south-western Sardinia, Italy). Biogeosciences 2012, 9, 4607–4620. [Google Scholar] [CrossRef]
- Tribollet, A.; Golubic, S. Reef Bioerosion: Agents and Processes. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 435–449. ISBN 978-94-007-0114-4. [Google Scholar]
- Svensson Nielsen, K.S.; Nielsen, J.K.; Granville Bromley, R. Palaeoecological and ichnological significance of microborings in Quaternary foraminifera. Palaeontol. Electron. 2003, 6, 13. [Google Scholar]
- Vohník, M. Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow. Biogeosciences 2021, 18, 2777–2790. [Google Scholar] [CrossRef]
Samples | Latitude (°N) | Longitude (°E) | Depth (m) |
---|---|---|---|
F01 | 27.95212 | 34.88669 | 9.5 |
F02 | 27.94719 | 34.87343 | 9 |
F03 | 27.94245 | 34.91801 | 12.5 |
F04 | 27.94161 | 34.90835 | 9.4 |
F05 | 27.93256 | 34.91718 | 8.3 |
F06 | 27.9357 | 34.91581 | 8.3 |
F07 | 27.935 | 34.92117 | 16.7 |
F08 | 27.939 | 34.91667 | 14 |
F09 | 27.94302 | 34.91983 | 11.3 |
F10 | 27.94182 | 34.91252 | 10 |
F11 | 27.93852 | 34.92245 | 15 |
Samples | #s | #o | #h | T | Ps | Po | Ph | FI |
---|---|---|---|---|---|---|---|---|
F01 | 66 | 16 | 105 | 187 | 0.35 | 0.09 | 0.56 | 4.74 |
F02 | <150 | N/A | N/A | N/A | N/A | |||
F03 | 138 | 7 | 95 | 240 | 0.58 | 0.03 | 0.40 | 6.57 |
F04 | 82 | 5 | 145 | 232 | 0.35 | 0.02 | 0.63 | 4.81 |
F05 | 92 | 14 | 104 | 210 | 0.44 | 0.07 | 0.50 | 5.44 |
F06 | 43 | 26 | 152 | 221 | 0.19 | 0.12 | 0.69 | 3.44 |
F07 | 135 | 14 | 73 | 222 | 0.61 | 0.06 | 0.33 | 6.80 |
F08 | 128 | 11 | 94 | 233 | 0.55 | 0.05 | 0.40 | 6.35 |
F09 | <150 | N/A | N/A | N/A | N/A | |||
F10 | 68 | 22 | 70 | 160 | 0.43 | 0.14 | 0.44 | 5.26 |
F11 | 70 | 12 | 68 | 150 | 0.47 | 0.08 | 0.45 | 5.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öğretmen, N.; Angulo-Preckler, C.; Aranda, M.; Duarte, C.M.; Westphal, H. The Northern Red Sea (Shushah Island) Coral Health Inferred from Benthic Foraminifers. Diversity 2024, 16, 463. https://doi.org/10.3390/d16080463
Öğretmen N, Angulo-Preckler C, Aranda M, Duarte CM, Westphal H. The Northern Red Sea (Shushah Island) Coral Health Inferred from Benthic Foraminifers. Diversity. 2024; 16(8):463. https://doi.org/10.3390/d16080463
Chicago/Turabian StyleÖğretmen, Nazik, Carlos Angulo-Preckler, Manuel Aranda, Carlos M. Duarte, and Hildegard Westphal. 2024. "The Northern Red Sea (Shushah Island) Coral Health Inferred from Benthic Foraminifers" Diversity 16, no. 8: 463. https://doi.org/10.3390/d16080463
APA StyleÖğretmen, N., Angulo-Preckler, C., Aranda, M., Duarte, C. M., & Westphal, H. (2024). The Northern Red Sea (Shushah Island) Coral Health Inferred from Benthic Foraminifers. Diversity, 16(8), 463. https://doi.org/10.3390/d16080463