A Survey of Changes in Grasslands within the Tonle Sap Lake Landscape from 2004 to 2023
Abstract
:1. Introduction
- Quantify trends in land cover change leading to losses in grasslands throughout the Tonle Sap Lake (TSL) landscape.
- a.
- Evaluate these changes in the context of dry grasslands, a vital wildlife habitat within this region.
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery Selection and Pre-Processing
2.3. Reference Data
2.4. Land Cover Classes
2.5. Land Cover Classification and Change Analysis
2.6. Accuracy Assessment
3. Results
3.1. Land Cover Classification and Change-Detection Analysis
3.2. Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Image Collection Metadata | |||||
---|---|---|---|---|---|
Path/Row | 2004 | 2008 | 2014 | 2018 | 2023 |
125/051 | X | ||||
125/052 | X | ||||
126/050 | X | ||||
126/051 | X | X | X | X | X |
126/052 | X | X | X | X | X |
127/050 | X | X | X | X | X |
127/051 | X | X | X | X | X |
127/052 | X | ||||
128/050 | X | X | X | X | X |
128/051 | X | X | X | X | X |
128/052 | X |
References
- Lamberts, D. The Tonle Sap Lake as a Productive Ecosystem. Int. J. Water Resour. Dev. 2006, 22, 481–495. [Google Scholar] [CrossRef]
- Kummu, M.; Sarkkula, J.; Koponen, J.; Nikula, J. Ecosystem Management of the Tonle Sap Lake: An Integrated Modelling Approach. Int. J. Water Resour. Dev. 2006, 22, 497–519. [Google Scholar] [CrossRef]
- Campbell, I.C.; Poole, C.; Giesen, W.; Valbo-Jorgensen, J. Species Diversity and Ecology of Tonle Sap Great Lake, Cambodia. Aquat. Sci. 2006, 68, 355–373. [Google Scholar] [CrossRef]
- Uk, S.; Yoshimura, C.; Siev, S.; Try, S.; Yang, H.; Oeurng, C.; Li, S.; Hul, S. Tonle Sap Lake: Current Status and Important Research Directions for Environmental Management. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 23, 177–189. [Google Scholar] [CrossRef]
- Chen, A.; Chen, A.; Varis, O.; Chen, D. Large Net Forest Loss in Cambodia’s Tonle Sap Lake Protected Areas during 1992–2019. Ambio 2022, 51, 1889–1903. [Google Scholar] [CrossRef] [PubMed]
- Packman, C.E. Seasonal Landscape Use and Conservation of a Critically Endangered Bustard: Bengal Florican in Cambodia. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2011. [Google Scholar]
- Van Zalinge, R.; Evans, T.; Visal, S. A Review of the Status and Distribution of Large Waterbirds in the Tonle Sap Biosphere Reserve—A Resource Document for the Management of Invasive Alien Species; Wildlife Conservation Society: New York, NY, USA, 2006. [Google Scholar]
- Gray, T.N.E.; Collar, N.J.; Davidson, P.J.A.; Dolman, P.M.; Evans, T.D.; Fox, H.N.; Chamnan, H.; Borey, R.; Kim Hout, S.; van Zalinge, R.N. Distribution, Status and Conservation of the Bengal Florican Houbaropsis Bengalensis in Cambodia. Bird Conserv. Int. 2009, 19, 1–14. [Google Scholar] [CrossRef]
- Mahood, S.P.; Hong, C.; Virak, S.; Sum, P.; Garnett, S.T. Catastrophic Ongoing Decline in Cambodia’s Bengal Florican Houbaropsis Bengalensis Population. Bird Conserv. Int. 2019, 30, 308–322. [Google Scholar] [CrossRef]
- Packman, C.E.; Showler, D.A.; Collar, N.J.; Virak, S.; Mahood, S.P.; Handschuh, M.; Evans, T.D.; Chamnan, H.; Dolman, P.M. Rapid Decline of the Largest Remaining Population of Bengal Florican Houbaropsis Bengalensis and Recommendations for Its Conservation. Bird Conserv. Int. 2014, 24, 429–437. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management-A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Mahood, S.P.; Poole, C.M.; Watson, J.E.M.; MacKenzie, R.A.; Sharma, S.; Garnett, S.T. Agricultural Intensification Is Causing Rapid Habitat Change in the Tonle Sap Floodplain, Cambodia. Wetl. Ecol. Manag. 2020, 28, 713–726. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Seng, K.H.; Pech, B.; Poole, C.M.; Tordoff, A.W.; Davidson, P.; Delattre, E. Directory of Important Bird Areas in Cambodia Key Sites for Conservation; Wildlife Conservation Society: Phnom Penh, 2002. [Google Scholar]
- van Zalinge, R. An Assessment of Exotic Species in the Tonle Sap Biosphere Reserve and Associated Threats to Biodiversity a Resource Document for the Management of Invasive Alien Species; Wildlife Conservation Society: Phnom Penh, Cambodia, 2006. [Google Scholar]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Van Cleemput, E.; Adler, P.; Suding, K.N. Making Remote Sense of Biodiversity: What Grassland Characteristics Make Spectral Diversity a Good Proxy for Taxonomic Diversity? Glob. Ecol. Biogeogr. 2023, 32, 2177–2188. [Google Scholar] [CrossRef]
- Jensen, J. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education Inc.: Glenview, IL, USA, 2016. [Google Scholar]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Folke, C.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; George, P.S.; et al. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Hasan, S.; Shi, W.; Zhu, X. Impact of Land Use Land Cover Changes on Ecosystem Service Value—A Case Study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Singh, A. Review Articlel: Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Macleod, R.D.; Congalton, R.G. A Quantitative Comparison of Change-Detection Algorithms for Monitoring Eelgrass from Remotely Sensed Data. Photogramm. Eng. Remote Sens. 1998, 64, 207–216. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Sourn, T.; Pok, S.; Chou, P.; Nut, N.; Theng, D.; Rath, P.; Reyes, M.R.; Prasad, P.V.V. Evaluation of Land Use and Land Cover Change and Its Drivers in Battambang Province, Cambodia from 1998 to 2018. Sustainability 2021, 13, 11170. [Google Scholar] [CrossRef]
- Senevirathne, N.; Mony, K.; Samarakoon, L.; Kumar, M.H. Land Use/Land Cover Change Detection of Tonle Sap Watershed, Cambodia. In Proceedings of the Asian Conference on Remote Sensing, Hanoi, Vietnam, 1–5 November 2010; pp. 852–857. [Google Scholar]
- Niu, X.; Hu, Y.; Lei, Z.; Wang, H.; Zhang, Y.; Yan, H. Spatial and Temporal Evolution Characteristics of Land Use/Cover and Its Driving Factor in Cambodia during 2000–2020. Land 2022, 11, 1556. [Google Scholar] [CrossRef]
- Sok, S.; Chhinh, N.; Hor, S.; Nguonphan, P. Climate Change Impacts on Rice Cultivation: A Comparative Study of the Tonle Sap and Mekong River. Sustainability 2021, 13, 8979. [Google Scholar] [CrossRef]
- UNEP-WCMC. IUCN Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-Based Conservation Measures (WD-OECM) [Online]. Available online: https://www.protectedplanet.net/en (accessed on 15 July 2024).
- Khmer Times Bakan Grassland Designated as Natural Protected Area. Available online: https://www.khmertimeskh.com/501337347/bakan-grassland-designated-as-natural-protected-area/ (accessed on 28 July 2024).
- Wildlife Conservation Society (WCS). Cambodia Conservation at Ang Trapeang Thmor. Available online: https://cambodia.wcs.org/About-Us/Latest- (accessed on 28 July 2024).
- USGS. Google Earth Engine USGS Landsat 5 Level 2, Collection 2, Tier 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2 (accessed on 15 July 2024).
- USGS. Google Earth Engine USGS Landsat 8 Level 2, Collection 2, Tier 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (accessed on 15 July 2024).
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian Grasslands Using Random Forest Feature Importance Selection during the Optimal Phenological Period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Lindsay, E.; Frauenfelder, R.; Rüther, D.; Nava, L.; Rubensdotter, L.; Strout, J.; Nordal, S. Multi-Temporal Satellite Image Composites in Google Earth Engine for Improved Landslide Visibility: A Case Study of a Glacial Landscape. Remote Sens. 2022, 14, 2301. [Google Scholar] [CrossRef]
- Sellami, E.M.; Rhinane, H. A New Approach for Mapping Land Use/Land Cover Using Google Earth Engine: A Comparison of Composition Images. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing, Johor Bahru, Malaysia, 6 February 2023; Volume 48, pp. 343–349. [Google Scholar]
- Noi Phan, T.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier-the Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
- Francini, S.; Hermosilla, T.; Coops, N.C.; Wulder, M.A.; White, J.C.; Chirici, G. An Assessment Approach for Pixel-Based Image Composites. ISPRS J. Photogramm. Remote Sens. 2023, 202, 1–12. [Google Scholar] [CrossRef]
- Ruefenacht, B. Comparison of Three Landsat TM Compositing Methods: A Case Study Using Modeled Tree Canopy Cover. Photogramm. Eng. Remote Sens. 2016, 82, 199–211. [Google Scholar] [CrossRef]
- Van Doninck, J.; Tuomisto, H. Influence of Compositing Criterion and Data Availability on Pixel-Based Landsat TM/ETM+ Image Compositing over Amazonian Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 857–867. [Google Scholar] [CrossRef]
- Google Compositing and Mosaicking. Available online: https://developers.google.com/earth-engine/guides/ic_composite_mosaic (accessed on 15 July 2024).
- JICA. Cambodia Reconnaissance Survey Digital Data Project; Japan International Cooperation Agency: Phnom Penh, Cambodia, 2003. [Google Scholar]
- Clements, T.; Visal, S. Tonle Sap Biodiversity Monitoring Protocols; Wildlife Conservation Society, Cambodia Program: Phnom Penh, Cambodia, 2007. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principals and Practices, 3rd ed.; CRC Press: Boca/Raton, FL, USA, 2019. [Google Scholar]
- European Space Agency (ESA). Available online: https://esa-worldcover.org/en/data-access#citation (accessed on 15 July 2024).
- Chandra, N.; Vaidya, H. Building Detection Methods from Remotely Sensed Images. Curr. Sci. 2022, 122, 1252. [Google Scholar] [CrossRef]
- Open Street Map Roads of Cambodia. Available online: https://data.opendevelopmentcambodia.net/en/dataset/road-and-railway-networks--in-cambodia (accessed on 28 May 2024).
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support Vector Machines for Classification in Remote Sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. SRTM Digital Elevation Data Version 4. Available online: https://srtm.csi.cgiar.org (accessed on 28 May 2024).
- Asokan, A.; Anitha, J. Change Detection Techniques for Remote Sensing Applications: A Survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM Derived Variables with Decision Trees for Habitat Classification and Change Detection in Complex Neotropical Environments. Remote Sens. Environ. 2008, 112, 2145–2159. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data. Remote Sens. 2017, 9, 1180. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fraser, B.T.; Congalton, R.G. Monitoring Fine-scale Forest Health Using Unmanned Aerial Systems (UAS) Multispectral Models. Remote Sens. 2021, 13, 4873. [Google Scholar] [CrossRef]
- Lin, X.; Chen, J.; Lou, P.; Yi, S.; Qin, Y.; You, H.; Han, X. Improving the Estimation of Alpine Grassland Fractional Vegetation Cover Using Optimized Algorithms and Multi-Dimensional Features. Plant Methods 2021, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Robertson, L.D.; King, D.J. Comparison of Pixel-and Object-Based Classification in Land Cover Change Mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. A Practical Look at the Sources of Confusion in Error Matrix Generation. Photogramm. Eng. Remote Sens. 1993, 59, 641–644. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Chapin III, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of Changing Biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M. Beyond Global Warming: Ecology and Global Change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Packman, C.E.; Gray, T.N.E.; Collar, N.J.; Evans, T.D.; Van Zalinge, R.N.; Virak, S.; Lovett, A.A.; Dolman, P.M. Rapid Loss of Cambodia’s Grasslands. Conserv. Biol. 2013, 27, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zuo, S.; Su, Y.; Zheng, X.; Wang, W.; Chen, K.; Ren, Y. An Approach Integrating Multi-Source Data with LandTrendr Algorithm for Refining Forest Recovery Detection. Remote Sens. 2023, 15, 2667. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC Temporal Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Du, Z.; Yu, L.; Li, X.; Zhao, J.; Chen, X.; Xu, Y.; Yang, P.; Yang, J.; Peng, D.; Xue, Y.; et al. Integrating Remote Sensing Temporal Trajectory and Survey Statistics to Update Land Use/Land Cover Maps. Int. J. Digit. Earth 2023, 16, 4428–4445. [Google Scholar] [CrossRef]
- Wu, J.; Jin, S.; Zhu, G.; Guo, J. Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China. Agronomy 2023, 13, 1585. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2015; ISBN 978-1-118-34328-9. [Google Scholar]
- Ban, Y. Multitemporal Remote Sensing Methods and Applications; van der Meer, F.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 20, pp. 1567–3200. [Google Scholar]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, L.E.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the Effects of Climate Variation and Human Activities on Grassland Degradation and Restoration across the Globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Baeza, S.; Vélez-Martin, E.; De Abelleyra, D.; Banchero, S.; Gallego, F.; Schirmbeck, J.; Veron, S.; Vallejos, M.; Weber, E.; Oyarzabal, M.; et al. Two Decades of Land Cover Mapping in the Río de La Plata Grassland Region: The MapBiomas Pampa Initiative. Remote Sens. Appl. 2022, 28, 100834. [Google Scholar] [CrossRef]
- Hor, S.; Saizen, I.; Tsutsumida, N.; Watanabe, T.; Kobayashi, S. The Impact of Agricultural Expansion on Forest Cover in Ratanakiri Province, Cambodia. J. Agric. Sci. 2014, 6, 46. [Google Scholar] [CrossRef]
- Song, S.; Lim, P.; Meas, O.; Mao, N. The Agricultural Land Use Situation on the Periphery of the Tonle Sap Lake. Int. J. Environ. Rural Dev. 2011, 2, 66–71. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
Reference Data (Total: Training and Validation) | |||||
---|---|---|---|---|---|
2004 | 2008 | 2014 | 2018 | 2023 | |
Grassland | 335 | 225 | 225 | 205 | 285 |
Forest/Shrub | 375 | 285 | 355 | 375 | 365 |
Cropland | 255 | 225 | 315 | 295 | 285 |
Water | 225 | 215 | 235 | 315 | 345 |
Village/Road | Cambodia Roads Mask | ||||
Total | 1190 | 950 | 1130 | 1190 | 1280 |
Land Cover Class | Definition |
---|---|
Grassland | Any area dominated by >10% herbaceous plants (i.e., those with a persistent stem but lacking woody/firm structure). These may include grasslands, prairies, pastures, or savannahs. Woody plants, such as trees and shrubs, may be present with coverages < 10%. Abandoned croplands are also included in the class if herbaceous coverage is >10%. |
Forest/Shrub | Any area dominated by trees or shrubs with a combined coverage >10%. Other land cover classes such as grasslands, croplands, or water may be present beneath the tree canopy. Areas planted for commercial agriculture (including rubber plantations) are not included in this class. This class does include seasonally flooded areas. |
Cropland | Any area covered by planted/sowed crops. These croplands may consist of herbaceous or woody crops, including paddy rice, rubber, cashew, cassava, or a mixture of other crops. Croplands may be irrigated or rainfed within this region. |
Water | Any area dominated by open water during the majority of the dry and wet seasons. These may include lakes, reservoirs, or rivers. |
Village/Road | Any area covered by buildings, roads, or other artificial (i.e., built-up) structures. |
2004 | 2008 | 2014 | 2018 | 2023 | |
---|---|---|---|---|---|
Overall Accuracy | 88.5% | 86.7% | 87.9% | 78.5% | 79.8% |
Grassland UA | 84.6% | 88.2% | 78% | 84.6% | 90% |
Grassland PA | 83.9% | 68.2% | 72.2% | 59.5% | 78.3% |
Cropland UA | 92.2% | 71.9% | 93.3% | 84.6% | 31.7% |
Cropland PA | 87.7% | 86.8% | 87.4% | 84.6% | 48.1% |
Forest/Shrub UA | 86.4% | 96.5% | 89.4% | 82.6% | 81.3% |
Forest/Shrub PA | 91.2% | 94.3% | 91.0% | 76.9% | 75.7% |
Water UA | 97.9% | 87.3% | 85.2% | 91.4% | 98.6% |
Water PA | 93.9% | 96.5% | 98.1% | 85.5% | 98.6% |
Dry Grassland Loss | ||
---|---|---|
Year | Hectares | Percent Decrease |
2004 | 297,004.71 | Baseline |
2008 | 253,596.98 | 15% |
2014 | 192,452.50 | 20.59% |
2018 | 171,072.58 | 7.20% |
2023 | 122,604.53 | 16.32% |
Total Decrease (2004–2023) | 174,400.18 | 58.7% |
Class | Map Area (Hectares) | Adjusted Area (Hectares) | 95% CI (Hectares) | User’s Accuracy | Producer’s Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|
Change | 174,400.18 | 216,965.70 | 20,102.80 | 69.0% | 55.5% | 83.89% |
Dry Grasslands | 122,604.53 | 248,575.82 | 18,989.90 | 64.0% | 31.6% | |
Croplands | 1,618,810.00 | 1,450,273.18 | 18,308.45 | 87.0% | 97.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chea, M.; Fraser, B.T.; Nay, S.; Sok, L.; Strasser, H.; Tizard, R. A Survey of Changes in Grasslands within the Tonle Sap Lake Landscape from 2004 to 2023. Diversity 2024, 16, 448. https://doi.org/10.3390/d16080448
Chea M, Fraser BT, Nay S, Sok L, Strasser H, Tizard R. A Survey of Changes in Grasslands within the Tonle Sap Lake Landscape from 2004 to 2023. Diversity. 2024; 16(8):448. https://doi.org/10.3390/d16080448
Chicago/Turabian StyleChea, Monysocheata, Benjamin T. Fraser, Sonsak Nay, Lyan Sok, Hillary Strasser, and Rob Tizard. 2024. "A Survey of Changes in Grasslands within the Tonle Sap Lake Landscape from 2004 to 2023" Diversity 16, no. 8: 448. https://doi.org/10.3390/d16080448
APA StyleChea, M., Fraser, B. T., Nay, S., Sok, L., Strasser, H., & Tizard, R. (2024). A Survey of Changes in Grasslands within the Tonle Sap Lake Landscape from 2004 to 2023. Diversity, 16(8), 448. https://doi.org/10.3390/d16080448