Application of Path Analysis and Remote Sensing to Assess the Interrelationships between Meteorological Variables and Vegetation Indices in the State of Espírito Santo, Southeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Image Acquisition and Processing
2.3. Acquisition and Processing of Meteorological Data
2.4. Selection of Agricultural Areas Influenced by Meteorological Variables
2.5. Statistical Analysis of the Relationship between Meteorological Variables and Vegetation Indices
3. Results and Discussion
3.1. Preliminary Correlation Analysis between Meteorological Variables and Vegetation Indices
3.2. Path Analysis of Meteorological Variables and Vegetation Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, B.; Steffen, W. A Synthesis of GCTE and Related Research. IGBP Sci. 1997, 1, 1–23. [Google Scholar]
- Chang, C.T.; Wang, S.F.; Vadeboncoeur, M.A.; Lin, T.C. Relating Vegetation Dynamics to Temperature and Precipitation at Monthly and Annual Timescales in Taiwan Using MODIS Vegetation Indices. Int. J. Remote Sens. 2014, 35, 598–620. [Google Scholar] [CrossRef]
- Luan, J.; Liu, D.; Zhang, L.; Huang, Q.; Feng, J.; Lin, M.; Li, G. Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000-2016. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 287–292. [Google Scholar] [CrossRef]
- Guo, W.; Ni, X.; Jing, D.; Li, S. Spatial-Temporal Patterns of Vegetation Dynamics and Their Relationships to Climate Variations in Qinghai Lake Basin Using MODIS Time-Series Data. J. Geogr. Sci. 2014, 24, 1009–1021. [Google Scholar] [CrossRef]
- He, D.; Yi, G.; Zhang, T.; Miao, J.; Li, J.; Bie, X. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 Years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Liu, H.; Miao, H.; Liu, J. Responses of Vegetation Yield to Precipitation and Reference Evapotranspiration in a Desert Steppe in Inner Mongolia, China. J. Arid Land 2023, 15, 477–490. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z. Temporal Variations of NDVI and Correlations between NDVI and Hydro-Climatological Variables at Lake Baiyangdian, China. Int. J. Biometeorol. 2014, 58, 1531–1543. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, C.; Cai, Y.; Yang, Z.; Yi, Y. NDVI Dynamics under Changing Meteorological Factors in a Shallow Lake in Future Metropolitan, Semiarid Area in North China. Sci. Rep. 2018, 8, 15971. [Google Scholar] [CrossRef]
- Sedighifar, Z.; Motlagh, M.G.; Halimi, M. Investigating Spatiotemporal Relationship between EVI of the MODIS and Climate Variables in Northern Iran. Int. J. Environ. Sci. Technol. 2020, 17, 733–744. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating Satellite-Derived Climatic and Vegetation Indices to Predict Smallholder Maize Yield Using Deep Learning. Agric. For. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Bruzzone, O.A.; Perri, D.V.; Easdale, M.H. Vegetation Responses to Variations in Climate: A Combined Ordinary Differential Equation and Sequential Monte Carlo Estimation Approach. Ecol. Inform. 2023, 73, 101913. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, Temperature and Precipitation Changes and Their Relationships with Different Vegetation Types during 1998-2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef]
- Hou, G.; Xu, C.; Dong, K.; Zhao, J.; Liu, Z. Spatial-Temporal Difference of Time Lag for Response of NDVI to Climatic Factors in Changbai Mountains. Fresenius Environ. Bull. 2016, 25, 3348–3362. [Google Scholar]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI Indicated Long-Term Interannual Changes in Vegetation Activities and Their Responses to Climatic and Anthropogenic Factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef]
- Pan, X.; Gao, Y.; Wang, J. Response Differences of MODIS-NDVI and MODIS-EVI to Climate Factors. J. Resour. Ecol. 2018, 9, 673. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Zhang, Z. A Remote Sensing-Based Scheme to Improve Regional Crop Model Calibration at Sub-Model Component Level. Agric. Syst. 2020, 181, 102814. [Google Scholar] [CrossRef]
- Parmar, H.V.; GONTIA, N.K. Remote Sensing Based Vegetation Indices and Crop Coefficient Relationship for Estimation of Crop Evapotranspiration in Ozat-II Canal Command. J. Agrometeorol. 2016, 18, 137–140. [Google Scholar] [CrossRef]
- Tomas-Burguera, M.; Vicente-Serrano, S.M.; Grimalt, M.; Beguería, S. Accuracy of Reference Evapotranspiration (ETo) Estimates under Data Scarcity Scenarios in the Iberian Peninsula. Agric. Water Manag. 2017, 182, 103–116. [Google Scholar] [CrossRef]
- Camara, G.; Davis, C.; Monteiro, A.M.V. Introdução a Ciência da Geoinformação; DPI/Inpe: São José dos Campos, Brazil, 2001. [Google Scholar]
- Sousa Júnior, M.A.; Sausen, T.M.; Lacruz, M.S.P. Monitoramento de Estiagem na Região Sul do Brasil Utilizando Dados ENVI/MODIS no Período de Dezembro de 2000 a Junho de 2009. In Proceedings of the XV Simpósio Brasileiro de Sensoriamento Remoto-SBSR, Curitiba, Brazil, 30 April–5 May 2011; INPE: Curitiba, Brazil, 2011; pp. 5901–5908. [Google Scholar]
- Alves, T.L.B.; Azevedo, P.V. Estudos de Bacias Hidrográficas como Suporte a Gestão dos Recursos Naturais. Eng. Ambient. Pesqui. Tecnol. 2013, 10, 166–184. [Google Scholar]
- Halimi, M.; Sedighifar, Z.; Mohammadi, C. Analyzing Spatiotemporal Land Use/Cover Dynamic Using Remote Sensing Imagery and GIS Techniques Case: Kan Basin of Iran. GeoJournal 2018, 83, 1067–1077. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.; Xie, Z. Application Conditions and Impact Factors for Various Vegetation Indices in Constructing the LAI Seasonal Trajectory over Different Vegetation Types. Ecol. Indic. 2020, 112, 106153. [Google Scholar] [CrossRef]
- Ahmed, A.; Akhtar, A.; Khalid, B.; Shamim, A. Correlation of Meteorological Parameters and Remotely Sensed Normalized Difference Vegetation Index (NDVI) with Cotton Leaf Curl Virus (CLCV) in Multan. J. Phys. Conf. Ser. 2013, 439, 012044. [Google Scholar] [CrossRef]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in Vegetation Photosynthetic Activity Trends across the Asia-Pacific Region over the Last Three Decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide (Collection 6); NASA: Washington, DC, USA, 2015; Volume 2015, p. 31.
- Lee, E.; Kastens, J.H.; Egbert, S.L. Investigating Collection 4 versus Collection 5 MODIS 250 m NDVI Time-Series Data for Crop Separability in Kansas, USA. Int. J. Remote Sens. 2016, 37, 341–355. [Google Scholar] [CrossRef]
- Liu, R. Compositing the Minimum NDVI for MODIS Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1396–1406. [Google Scholar] [CrossRef]
- Gan, L.; Cao, X.; Chen, X.; Dong, Q.; Cui, X.; Chen, J. Comparison of MODIS-Based Vegetation Indices and Methods for Winter Wheat Green-up Date Detection in Huanghuai Region of China. Agric. For. Meteorol. 2020, 288–289, 108019. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating Wheat Yields in Australia Using Climate Records, Satellite Image Time Series and Machine Learning Methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-Based Soybean Yield Forecast: Integrating Machine Learning and Weather Data for Improving Crop Yield Prediction in Southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Senhorelo, A.P.; Sousa, E.F.; de Santos, A.R.; dos Ferrari, J.L.; Peluzio, J.B.E.; Zanetti, S.S.; Carvalho, R.d.C.F.; Camargo Filho, C.B.; Souza, K.B.; de Moreira, T.R.; et al. Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity 2023, 15, 460. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hussein, S.O.; Kovács, F.; Tobak, Z. Spatiotemporal Assessment of Vegetation Indices and Land Cover for Erbil City and Its Surrounding Using Modis Imageries. J. Environ. Geogr. 2017, 10, 31–39. [Google Scholar] [CrossRef]
- de Souza, T.V. Aspectos Estatísticos da Análise de Trilha (Path Analysis) Aplicada em Experimentos Agrícolas; Universidade Federal de Lavras: Lavras, Brazil, 2013. [Google Scholar]
- Cruz, C.D.; Carneiro, P.C.S.; Regazzi, A.J. Modelos Biómetricos Aplicados ao Melhoramento Genético, 3rd ed.; UFV: Viçosa, Brazil, 2014; ISBN 978-85-7269-515-2. [Google Scholar]
- Soares, M.M.; Juvanhol, L.L.; Ribeiro, S.A.V.; Franceschini, S.d.C.C.; Shivappa, N.; Hebert, J.R.; Araújo, R.M.A. Proinflammatory Maternal Diet and Early Weaning Are Associated with the Inflammatory Diet Index of Brazilian Children (6–12 Mo): A Pathway Analysis. Nutrition 2023, 105, 111845. [Google Scholar] [CrossRef]
- Pires, C.G.; Borim, F.S.A.; Queluz, F.N.F.R.; Cachioni, M.; Neri, A.L.; Batistoni, S.S.T. Burden, Family Functioning, and Psychological Health of Older Caregivers of Older Adults: A Path Analysis. Geriatr. Gerontol. Aging 2022, 16, 1–9. [Google Scholar] [CrossRef]
- Gori, A.; Topino, E.; Griffiths, M.D. The Associations Between Attachment, Self-Esteem, Fear of Missing out, Daily Time Expenditure, and Problematic Social Media Use: A Path Analysis Model. Addict. Behav. 2023, 141, 107633. [Google Scholar] [CrossRef]
- Jiang, Q.; Shen, H.; Gao, P.; Yu, P.; Yang, F.; Xu, Y.; Yu, D.; Xia, W.; Wang, L. Non-Enzymatic Browning Path Analysis of Ready-to-Eat Crayfish (Promcambarus Clarkii) Tails during Thermal Treatment and Storage. Food Biosci. 2023, 51, 102334. [Google Scholar] [CrossRef]
- Ming, R.; Li, B.; Du, C.; Yu, W.; Liu, H.; Kosonen, R.; Yao, R. A Comprehensive Understanding of Adaptive Thermal Comfort in Dynamic Environments-An Interaction Matrix-Based Path Analysis Modeling Framework. Energy Build. 2023, 284, 112834. [Google Scholar] [CrossRef]
- Akilli, A.; Kul, E.; Atil, H. Path Analysis for Factor Affecting the 305- Day Milk Yield of Holstein Cows. J. Agric. Fac. Gaziosmanpasa Univ. 2022, 39, 191–198. [Google Scholar] [CrossRef]
- da Silva, E.E.; Rojo Baio, F.H.; Ribeiro Teodoro, L.P.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-Multispectral and Vegetation Indices in Soybean Grain Yield Prediction Based on in Situ Observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Coimbra, J.L.M.; Benin, G.; Vieira, E.A.; Oliveira, A.C.; de Carvalho, F.I.F.; Guidolin, A.F.; Soares, A.P. Consequências da Multicolinearidade Sobre a Análise de Trilha em Canola. Ciência Rural 2005, 35, 347–352. [Google Scholar] [CrossRef]
- Vieira, E.A.; Carvalho, F.I.F.; Oliveira, A.C.; Martins, L.F.; Benin, G.; Silva, J.A.G.; Coimbra, J.; Martins, A.F.; Carvalho, M.F.; Ribeiro, G. Análise de Trilha Entre os Componentes Primários e Secundários do Rendimento de Grãos em Trigo. Rev. Bras. Agrociência 2007, 13, 169–174. [Google Scholar]
- Salla, V.P.; Danner, M.A.; Citadin, I.; Sasso, S.A.Z.; Donazzolo, J.; Gil, B.V. Análise de Trilha em Caracteres de Frutos de Jabuticabeira. Pesqui. Agropecu. Bras. 2015, 50, 218–223. [Google Scholar] [CrossRef]
- da Silva, C.A.; Schmildt, E.R.; Schmildt, O.; Alexandre, R.S.; Cattaneo, L.F.; Ferreira, J.P.; Nascimento, A.L. Correlações Fenotípicas e Análise de Trilha em Caracteres Morfoagronômicos de Mamoeiro. Rev. Agro@mbiente Online 2016, 10, 217. [Google Scholar] [CrossRef]
- Namdev, S.K.; Dongre, R. Correlation and Path Analysis in Tomato. Res. J. Agric. Sci. 2018, 9, 588–590. [Google Scholar] [CrossRef]
- Buelah, J.; Reddy, V.R.; Srinivas, B.; Balram, N. Correlation and Path Analysis for Yield and Quality Traits in Hybrid Rice (Oryza sativa L.). Int. J. Environ. Clim. Chang. 2022, 12, 723–728. [Google Scholar] [CrossRef]
- Lal, R.K.; Gupta, P.; Chanotiya, C.S.; Mishra, A.; Kumar, A. The Nature and Extent of Heterosis, Combining Ability under the Influence of Character Associations, and Path Analysis in Basil (Ocimum basilicum L.). Ind. Crops Prod. 2023, 195, 116421. [Google Scholar] [CrossRef]
- Long, S.; Qingxi, G.; Wenchao, Z.; Guoting, Y.; Xiaofeng, Z. The Path Analysis on NDVI of Typical Vegetations and Climate Factors in North-South Transect of Eastern China. J. Northeast For. Univ. 2005, 33, 59–61. [Google Scholar]
- Huang, F.; Mo, X.; Lin, Z.; Hu, S. Dynamics and Responses of Vegetation to Climatic Variations in Ziya-Daqing Basins, China. Chinese Geogr. Sci. 2016, 26, 478–494. [Google Scholar] [CrossRef]
- Li, J. Responses of Vegetation NDVI to Climate Change and Land Use in Ordos City, North China. Appl. Sci. 2022, 12, 7288. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- AbdelRahman, M.A.E.; Tahoun, S. GIS Model-Builder Based on Comprehensive Geostatistical Approach to Assess Soil Quality. Remote Sens. Appl. Soc. Environ. 2019, 13, 204–214. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10.1; Environmental Systems Research Institute: Redlands, CA, USA, 2015. [Google Scholar]
- Moraes, R.A. Monitoramento e Estimativa da Produção da Cultura de Cana-de-Açúcar no Estado de São Paulo por Meio de Dados Espectrais e Agrometeorológicos; Unicamp: Campinas, Brazil, 2012. [Google Scholar]
- Moraes, R.A.; Rocha, J.V. Imagens de Coeficiente de Qualidade (Quality) e de Confiabilidade (Reliability) para Seleção de Pixels em Imagens de NDVI do Sensor MODIS para Monitoramento da Cana-de-Açúcar no Estado de São Paulo. In Proceedings of the XV Simpósio Brasileiro de Sensoriamento Remoto-SBSR, Curitiba, Brazil, 30 April–5 May 2011; INPE: Curitiba, Brazil, 2011; pp. 547–552. [Google Scholar]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of Seasonal Vegetation Development to Climatic Variations in Eastern Central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Watson, D.F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing 1985, 2, 315–327. [Google Scholar]
- GEOBASES Sistema Integrado de Bases Geoespaciais do Estado do Espírito Santo. Available online: https://geobases.es.gov.br/downloads (accessed on 12 March 2019).
- INMET Instituto Nacional de Meteorologia. Rede de Estações Meteorológicas Automáticas. In Ministério da Agric. Pecuária e Abastecimento; MAPA: Brasília, Brazil, 2011; pp. 1–11. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo: Guias para la Determinación de los Requerimientos de Agua de los Cultivos; FAO: Rome, Italy, 2006; ISBN 92-5-304219-2. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance; Drexel Institute of Technology-Laboratory of Climatology: Centerton, NJ, USA, 1955. [Google Scholar]
- Costa, M.H. Balanço Hídrico Segundo Thornthwaite e Mather, 1955; Universidade Federal de Viçosa, Departamento de Engenharia Agrícola: Viçosa, Brazil, 1994. [Google Scholar]
- Rolim, G.; Sentelhas, P.; Barbiere, V. Planilhas No Ambiente EXCEL Para Os Cálculos de Balanços Hídricos: Normal, Sequencial, de Cultura e de Produtividade Real e Potencial. Rev. Bras. Agrometeorol. 1998, 6, 133–137. [Google Scholar]
- Stekhoven, D.J.; Bühlmann, P. Missforest-Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef]
- Valle, C.B.; Macedo, M.C.M.; Euclides, V.P.B.; Jank, L.; Resende, R.M.S. Gênero Brachiaria. In Plantas Forrageiras; Fonseca, D.M., Martuscello, J.A., Eds.; UFV: Viçosa, Brazil, 2010; pp. 30–77. [Google Scholar]
- Mohr, H.; Schopfer, P. Plant Physiology; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Coelho, M.A.; Terra, L. Geografia Geral: O Espaço Natural e Sócioeconômico; Moderna: São Paulo, Brazil, 2001. [Google Scholar]
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere 2020, 11, 656. [Google Scholar] [CrossRef]
- Christopherson, R.W. Geossistemas: Uma Introdução à Geografia Física, 7th ed.; Bookman: Porto Alegre, Brazil, 2012. [Google Scholar]
- de Morisson Valeriano, M. Topodata: Guia para Utilização de Dados Geomorfológicos Locais. Inpe 2008, 73. [Google Scholar]
- The R Project for Statistical Computing. Available online: http://www.r-project.org (accessed on 12 March 2019).
- Cruz, C.D. GENES: A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Muradyan, V.; Tepanosyan, G.; Asmaryan, S.; Saghatelyan, A.; Dell’Acqua, F. Relationships between NDVI and Climatic Factors in Mountain Ecosystems: A Case Study of Armenia. Remote Sens. Appl. Soc. Environ. 2019, 14, 158–169. [Google Scholar] [CrossRef]
- Neto, P.L.d.O.C. Estatística, 2nd ed.; Edgard Blücher: São Paulo, Brazil, 2002. [Google Scholar]
- Lúcio, A.D.C.; Storck, L.; Krause, W.; Gonçalves, R.Q.; Nied, A.H. Relações entre os Caracteres de Maracujazeiro-Azedo. Cienc. Rural 2013, 43, 225–232. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw Hill/Irwin: New York, NY, USA, 2005. [Google Scholar]
- Carvalho, C.G.P.; de Oliveira, V.R.; Cruz, C.D.; Casali, V.W.D. Análise de Trilha sob Multicolinearidade em Pimentão. Pesqui. Agropecu. Bras. 1999, 34, 603–613. [Google Scholar] [CrossRef]
- Oliveira, E.J.; de Lima, D.S.; de Lucena, R.S.; Motta, T.B.N.; Dantas, J.L.L. Correlações Genéticas e Análise de Trilha para Número de Frutos Comerciais por Planta em Mamoeiro. Pesqui. Agropecu. Bras. 2010, 45, 855–862. [Google Scholar] [CrossRef]
- Paz-Pellat, F.; Bolaños-González, M.; Palacios-Vélez, E.; Palacios-Sánchez, L.A.; Martínez-Menes, M.; Huete, A. Optimization of the Spectral Vegetation Index NDVIcp. Agrociencia 2008, 42, 925–937. [Google Scholar]
- Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto da Vegetação, 2nd ed.; Oficina de Textos: São Paulo, Brazil, 2012; ISBN 9788579750533. [Google Scholar]
- Garroutte, E.; Hansen, A.; Lawrence, R. Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage for Migratory Elk in the Greater Yellowstone Ecosystem. Remote Sens. 2016, 8, 404. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Witz, K.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- Branco, E.R.F. Ocorrências de Seca e Tendências da Vegetação na Reserva Biológica de Sooretama e Zona de Amortecimento, no Estado do Espírito Santo, Brasil; Universidade Federal do Espírito Santo: Vitória, Brazil, 2016. [Google Scholar]
- Feng, R.; Wu, J.W.; Yu, W.Y.; Ji, R.P.; Hu, W.; Zhang, Y.S. A Study on the Changes in NDVI of Panjin Reed Wetland and an Analysis on Its Correlation with Meteorological Factors. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 042038. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Liang, H.; Huang, L. Change in Vegetation Coverage and Its Relationships with Climatic Factors in Temperate Steppe, Inner Mongolia. Shengtai Xuebao Acta Ecol. Sin. 2010, 30, 3733–3743. [Google Scholar]
- Awasthi, N.; Tripathi, J.; Dakhore, K.K.; Gupta, D.K.; Kadam, Y.E. Linkage between the Vegetation Indices and Climate Factors over Haryana. J. Agrometeorol. 2022, 24, 380–383. [Google Scholar] [CrossRef]
- Shen, B.; Fang, S.; Li, G. Vegetation Coverage Changes and Their Response to Meteorological Variables from 2000 to 2009 in Naqu, Tibet, China. Can. J. Remote Sens. 2014, 40, 67–74. [Google Scholar] [CrossRef]
- Jeong, S.J.; Schimel, D.; Frankenberg, C.; Drewry, D.T.; Fisher, J.B.; Verma, M.; Berry, J.A.; Lee, J.E.; Joiner, J. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function over Northern High Latitude Forests. Remote Sens. Environ. 2017, 190, 178–187. [Google Scholar] [CrossRef]
- Li, Z.; Yan, F.; Fan, X. The Variability of NDVI over Northwest China and Its Relation to Temperature and Precipitation. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Toulouse, France, 21–25 July 2003; Volume 4, pp. 2275–2277. [Google Scholar]
- Guo, B.; Zhou, Y.; Wang, S.X.; Tao, H.P. The Relationship between Normalized Difference Vegetation Index (NDVI) and Climate Factors in the Semiarid Region: A Case Study in Yalu Tsangpo River Basin of Qinghai-Tibet Plateau. J. Mt. Sci. 2014, 11, 926–940. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial Patterns of NDVI in Response to Precipitation and Temperature in the Central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Redge Regression: Applications to Northogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Hu, M.Q.; Mao, F.; Sun, H.; Hou, Y.Y. Study of Normalized Difference Vegetation Index Variation and Its Correlation with Climate Factors in the Three-River-Source Region. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 24–33. [Google Scholar] [CrossRef]
- Guo, L.; Wu, S.; Zhao, D.; Yin, Y.; Leng, G.; Zhang, Q. NDVI-Based Vegetation Change in Inner Mongolia from 1982 to 2006 and Its Relationship to Climate at the Biome Scale. Adv. Meteorol. 2014, 2014, 692068. [Google Scholar] [CrossRef]
Start Date (Julian Day) | Image Years |
---|---|
01/01 (001), 01/17 (017), 02/02 (033), 02/18 (049), * 03/06 (065), 03/22 (081), 04/07 (097), 04/23 (113), 05/09 (129), 05/25 (145), 06/10 (161), 06/26 (177), 07/12 (193), 07/28 (209), 08/13 (225), 08/29 (241), 09/14 (257), 09/30 (273), 10/16 (289), 11/01 (305), 11/17 (321), 12/03 (337), 12/19 (353) | From 2008 to 2017 |
Pixel Value | Quality | Description | Value after Reclassification |
---|---|---|---|
−1 | No data | Unprocessed data | No data |
0 | Good data | Can be used with confidence | 0 |
1 | Marginal data | * Can be used | 0 |
2 | Snow/ice | Target covered by snow or ice | No data |
3 | Cloud | Cloud covered target | No data |
Days of Delay in Relation to Vegetation Index | NDVI or EVI i-th Value (yi) in Response to the i-th Value of the Meteorological Variable (xi) |
---|---|
0 | yi, with xi without temporal delay |
16 | yi, with xi previous 16 days |
32 | yi, with xi previous 32 days |
48 | yi, with xi previous 48 days |
64 | yi, with xi previous 64 days |
80 | yi, with xi previous 80 days |
Condition | Interpretation |
---|---|
1st—if both rxy and path coefficient were statistically significant in magnitude and signal | Direct effect of the explanatory variable |
2nd—if rxy exhibited significance, whereas the path coefficient did not achieve statistical significance | Correlation arose due to indirect effects |
3rd—if rxy lacked significance, whereas the path coefficient demonstrated statistical significance | Existence of a direct effect of the variable, however the absence of correlation was attributed to the presence of indirect effects |
4th—if neither rxy nor the path coefficient reached statistical significance | Effects that did not achieve statistical significance (ns) |
VARIABLES (xi) | Temperature | Relative Humidity | Solar Radiation | Precipitation | Evapotranspiration | Water Deficiency |
---|---|---|---|---|---|---|
Temperature | 0.336 | −0.102 | 0.533 | −0.024 | −0.322 | −0.041 |
Relative humidity | −0.059 | 0.580 | −0.220 | −0.145 | 0.192 | 0.199 |
Solar radiation | 0.267 | −0.191 | 0.671 | 0.007 | −0.372 | −0.078 |
Precipitation | 0.034 | 0.355 | −0.020 | −0.237 | 0.018 | 0.148 |
Evapotranspiration | 0.263 | −0.271 | 0.606 | 0.010 | −0.412 | −0.110 |
Water deficiency | 0.057 | −0.473 | 0.215 | 0.140 | −0.186 | −0.244 |
rxEVI | 0.378 | 0.547 | 0.304 | 0.298 | 0.086 | −0.487 |
Multicollinearity diagnosis | ||||||
Number of Conditions | 45.53 | |||||
Variance inflation factor | 3.17 | 3.68 | 6.56 | 2.11 | 8.72 | 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senhorelo, A.P.; Sousa, E.F.d.; Santos, A.R.d.; Ferrari, J.L.; Peluzio, J.B.E.; Carvalho, R.d.C.F.; Souza, K.B.d.; Moreira, T.R. Application of Path Analysis and Remote Sensing to Assess the Interrelationships between Meteorological Variables and Vegetation Indices in the State of Espírito Santo, Southeastern Brazil. Diversity 2024, 16, 90. https://doi.org/10.3390/d16020090
Senhorelo AP, Sousa EFd, Santos ARd, Ferrari JL, Peluzio JBE, Carvalho RdCF, Souza KBd, Moreira TR. Application of Path Analysis and Remote Sensing to Assess the Interrelationships between Meteorological Variables and Vegetation Indices in the State of Espírito Santo, Southeastern Brazil. Diversity. 2024; 16(2):90. https://doi.org/10.3390/d16020090
Chicago/Turabian StyleSenhorelo, Adriano Posse, Elias Fernandes de Sousa, Alexandre Rosa dos Santos, Jéferson Luiz Ferrari, João Batista Esteves Peluzio, Rita de Cássia Freire Carvalho, Kaíse Barbosa de Souza, and Taís Rizzo Moreira. 2024. "Application of Path Analysis and Remote Sensing to Assess the Interrelationships between Meteorological Variables and Vegetation Indices in the State of Espírito Santo, Southeastern Brazil" Diversity 16, no. 2: 90. https://doi.org/10.3390/d16020090
APA StyleSenhorelo, A. P., Sousa, E. F. d., Santos, A. R. d., Ferrari, J. L., Peluzio, J. B. E., Carvalho, R. d. C. F., Souza, K. B. d., & Moreira, T. R. (2024). Application of Path Analysis and Remote Sensing to Assess the Interrelationships between Meteorological Variables and Vegetation Indices in the State of Espírito Santo, Southeastern Brazil. Diversity, 16(2), 90. https://doi.org/10.3390/d16020090