Thermal Tolerance and Vulnerability to Climate Change of a Threatened Freshwater Mussel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Specimens
2.3. Temperature Measurement and Meteorological Data
2.4. Mesocosm Field Study: Cage Experiments
2.5. Laboratory Experiments
2.6. Data Analyses
3. Results
3.1. Environmental Data
3.2. Mussel Survival and Growth in Mesocosm Experiments
3.3. Summer Laboratory Experiments
3.4. Winter Experiments
4. Discussion
4.1. Direct Temperature Effects on Mussel Growth
4.2. Direct Temperature Effects on Survival
4.3. Indirect Temperature Effects on Survival during Winter
4.4. Implications for Conservation Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nature Conservation
References
- Pörtner, H.O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Wagner, A.; Hülsmann, S.; Paul, L.; Paul, R.J.; Petzoldt, T.; Sachse, R.; Schiller, T.; Zeis, B.; Benndorf, J.; Berendonk, T.U. A phenomenological approach shows a high coherence of warming patterns in dimictic aquatic systems across latitude. Mar. Biol. 2012, 159, 2543–2559. [Google Scholar] [CrossRef] [PubMed]
- Hastie, L.C.; Cosgrove, P.J.; Ellis, N.; Gaywood, M.J. The threat of climate change to freshwater pearl mussel populations. AMBIO J. Hum. Environ. 2003, 32, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.W.; Nobilis, F. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 2007, 52, 74–85. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Fernandes, L.S.; Varandas, S.G.P.; Pereira, M.G.; Sousa, R.; Teixeira, A.; Lopes-Lima, M.; Cortes, R.; Pacheco, F.A.L. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 2015, 511, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; De Meester, L.; et al. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Kail, J.; Palt, M.; Lorenz, A.; Hering, D. Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations. Hydrol. Process. 2021, 35, e14008. [Google Scholar] [CrossRef]
- Hoess, R.; Generali, K.A.; Kuhn, J.; Geist, J. Impact of Fish Ponds on Stream Hydrology and Temperature Regime in the Context of Freshwater Pearl Mussel Conservation. Water 2022, 14, 2490. [Google Scholar] [CrossRef]
- Zani, P.A. Climate change trade-offs in the side-blotched lizard (Uta stansburiana): Effects of growing-season length and mild temperatures on winter survival. Physiol. Biochem. Zool. 2008, 81, 797–809. [Google Scholar] [CrossRef]
- Elliott, J.M. Quantitative Ecology and the Brown Trout; Oxford University Press: Oxford, UK, 1994; 286p. [Google Scholar]
- Elliott, J.M. Pools as refugia for brown trout during two summer droughts: Trout responses to thermal and oxygen stress. J. Fish Biol. 2000, 56, 938–948. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Crowder, L.B.; Medvick, P.A. Temperature as an ecological resource. Am. Zool. 1979, 19, 331–343. [Google Scholar] [CrossRef]
- Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 2010, 644, 69–88. [Google Scholar] [CrossRef]
- Young, M.R.; Cosgrove, P.J.; Hastie, L.C. The Extent of, and Causes for, the Decline of a Highly Threatened Naiad: Margaritifera margaritifera. In Ecology and Evolution of the Freshwater Mussels Unionoida; Bauer, G., Wächtler, K., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2001; Volume 145. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Sousa, R.; Geist, J.; Aldridge, D.C.; Araujo, R.; Bergengren, J.; Bespalaya, Y.; Bódis, E.; Burlakova, L.; Van Damme, D.; et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 2017, 92, 572–607. [Google Scholar] [CrossRef] [PubMed]
- Strayer, D.L. Use of flow refuges by unionid mussels in rivers. J. N. Am. Benthol. Soc. 1999, 18, 468–476. [Google Scholar] [CrossRef]
- Hastie, L.C.; Young, M.R. Timing of spawning and glochidial release in Scottish freshwater pearl mussel (Margaritifera margaritifera) populations. Freshw. Biol. 2003, 48, 2107–2117. [Google Scholar] [CrossRef]
- Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 2011, 11, 1507–1516. [Google Scholar] [CrossRef]
- Österling, E.M. Timing, growth and proportion of spawners of the threatened unionoid mussel Margaritifera margaritifera: Influence of water temperature, turbidity and mussel density. Aquat. Sci. 2015, 77, 1–8. [Google Scholar] [CrossRef]
- Boon, P.J.; Cooksley, S.L.; Geist, J.; Killeen, I.J.; Moorkens, E.A.; Sime, I. Developing a standard approach for monitoring freshwater pearl mussel (Margaritifera margaritifera) populations in European rivers. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1365–1379. [Google Scholar] [CrossRef]
- Altmüller, R.; Dettmer, R. Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters—Experiences within the scope of the Lutterproject. Inform. D. Naturschutz Niedersachs. 2006, 26, 192–204. [Google Scholar]
- Hruška, J. The freshwater pearl mussel in South Bohemia: Evaluation of the effect of temperature on reproduction, growth and age structure of the population. Arch. Für Hydrobiol. 1992, 126, 181–191. [Google Scholar] [CrossRef]
- Ganser, A.M.; Newton, T.J.; Haro, R.J. The effects of elevated water temperature on native juvenile mussels: Implications for climate change. Freshw. Sci. 2013, 32, 1168–1177. [Google Scholar] [CrossRef]
- Eissenhauer, F.; Grunicke, F.; Wagner, A.; Linke, D.; Kneis, D.; Weitere, M.; Berendonk, T.U. Active movement to coarse grained sediments by globally endangered freshwater pearl mussels (Margaritifera margaritifera). Hydrobiologia 2023, 850, 985–999. [Google Scholar] [CrossRef]
- Bauer, G. Threats to the freshwater pearl mussel Margaritifera margaritifera L. in central Europe. Biol. Conserv. 1988, 45, 239–253. [Google Scholar] [CrossRef]
- Rowe, C.L. The calamity of so long life: Life histories, contaminants, and potential emerging threats to long-lived vertebrates. Bioscience 2008, 58, 623–631. [Google Scholar] [CrossRef]
- Pandolfo, T.J.; Cope, W.G.; Arellano, C.; Bringolf, R.B.; Barnhart, M.C.; Hammer, E. Upper thermal tolerances of early life stages of freshwater mussels. J. N. Am. Benthol. Soc. 2010, 29, 959–969. [Google Scholar] [CrossRef]
- Taeubert, J.E.; Gum, B.; Geist, J. Variable development and excystment of freshwater pearl mussel (Margaritifera margaritifera L.) at constant temperature. Limnologica 2013, 43, 319–322. [Google Scholar] [CrossRef]
- Hastie, L.C.; Boon, P.J.; Young, M.R. Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L.). Hydrobiologia 2000, 429, 59–71. [Google Scholar] [CrossRef]
- Geist, J.; Auerswald, K. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshw. Biol. 2007, 52, 2299–2316. [Google Scholar] [CrossRef]
- Gum, B.; Lange, M.; Geist, J. A critical reflection on the success of rearing and culturing juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 743–751. [Google Scholar] [CrossRef]
- Denic, M.; Taeubert, J.E.; Lange, M.; Thielen, F.; Scheder, C.; Gumpinger, C.; Geist, J. Influence of stock origin and environmental conditions on the survival and growth of juvenile freshwater pearl mussels (Margaritifera margaritifera) in a cross-exposure experiment. Limnologica 2015, 50, 67–74. [Google Scholar] [CrossRef]
- Haag, W.R.; Culp, J.J.; McGregor, M.A.; Bringolf, R.; Stoeckel, J.A. Growth and survival of juvenile freshwater mussels in streams: Implications for understanding enigmatic mussel declines. Freshw. Sci. 2019, 38, 753–770. [Google Scholar] [CrossRef]
- Schartum, E.; Mortensen, S.; Pittman, K.; Jakobsen, P.J. From pedal to filter feeding: Ctenidial organogenesis and implications for feeding in the postlarval freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). J. Molluscan Stud. 2017, 83, 36–42. [Google Scholar] [CrossRef]
- Lavictoire, L.; Ramsey, A.D.; Moorkens, E.A.; Souch, G.; Barnhart, M.C. Ontogeny of juvenile freshwater pearl mussels, Margaritifera margaritifera (Bivalvia: Margaritiferidae). PLoS ONE 2018, 13, e0193637. [Google Scholar] [CrossRef] [PubMed]
- Veniot, A.; Bricelj, V.; Beninger, P. Ontogenetic changes in gill morphology and potential significance for food acquisition in the scallop Placopecten magellanicus. Mar. Biol. 2003, 142, 123–131. [Google Scholar] [CrossRef]
- Carey, C.S.; Jones, J.W.; Hallerman, E.M.; Butler, R.S. Determining optimum temperature for growth and survival of laboratory-propagated juvenile freshwater mussels. N. Am. J. Aquac. 2013, 75, 532–542. [Google Scholar] [CrossRef]
- Buddensiek, V. The culture of juvenile freshwater pearl mussels Margaritifera margaritifera L. in cages: A contribution to conservation programmes and the knowledge of habitat requirements. Biol. Conserv. 1995, 74, 33–40. [Google Scholar] [CrossRef]
- Eybe, T.; Thielen, F.; Bohn, T.; Sures, B. The first millimetre–rearing juvenile freshwater pearl mussels (Margaritifera margaritifera L.) in plastic boxes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 964–975. [Google Scholar] [CrossRef]
- Scheder, C.; Lerchegger, B.; Jung, M.; Csar, D.; Gumpinger, C. Practical experience in the rearing of freshwater pearl mussels (Margaritifera margaritifera): Advantages of a work-saving infection approach, survival, and growth of early life stages. Hydrobiologia 2014, 735, 203–212. [Google Scholar] [CrossRef]
- Lavictoire, L.; Moorkens, E.; Ramsey, A.D.; Sinclair, W.; Sweeting, R.A. Effects of substrate size and cleaning regime on growth and survival of captive-bred juvenile freshwater pearl mussels, Margaritifera margaritifera (Linnaeus, 1758). Hydrobiologia 2016, 766, 89–102. [Google Scholar] [CrossRef]
- da Silva, J.P.; Gonçalves, D.V.; Lopes-Lima, M.; Anastácio, P.M.; Banha, F.; Frimpong, E.; Gama, M.; Miranda, R.; Reis, J.; Filipe, A.F.; et al. Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshw. Biol. 2022, 67, 842–856. [Google Scholar] [CrossRef]
- Brauns, M.; Berendonk, T.; Berg, S.; Grunicke, F.; Kneis, D.; Krenek, S.; Schiller, T.; Schneider, J.; Wagner, A.; Weitere, M. Stable isotopes reveal the importance of terrestrially derived resources for the diet of the freshwater pearl mussel (Margaritifera margaritifera). Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2496–2505. [Google Scholar] [CrossRef]
- Grunicke, F.; Wagner, A.; von Elert, E.; Weitere, M.; Berendonk, T. Riparian detritus vs. stream detritus: Food quality determines fitness of juveniles of the highly endangered freshwater pearl mussels (Margaritifera margaritifera). Hydrobiologia 2023, 850, 729–746. [Google Scholar] [CrossRef]
- Baer, O. Die Flussperlmuschel Margaritifera margaritifera (L.): Ökologie, umweltbedingte Reaktionen und Schutzproblematik einer vom Aussterben bedrohten Tierart. Die neue Brehm-Bücherei Bd. 619. Westarp Wissenschaften; Spektrum Akademischer Verlag: Magdeburg/Heidelberg, Germany, 1995; 118p. [Google Scholar]
- Lange, M.; Selheim, H. Growing factors of juvenile freshwater pearl mussels and their characteristics in selected pearl mussel habitats in Saxony (Germany). Ferrantia 2011, 64, 30–37. [Google Scholar]
- Geist, J.; Thielen, F.; Lavictoire, L.; Hoess, R.; Altmueller, R.; Baudrimont, M.; Blaize, C.; Campos, M.; Carroll, P.; Daill, D.; et al. Captive breeding of European freshwater mussels as a conservation tool: A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 1321–1359. [Google Scholar] [CrossRef]
- Jecke, F.; Denic, M.; Bayerl, H.; Findeis, T.; Geist, J.; Grunicke, F.; Schmidt, T.; Wagner, A.; Berendonk, T.U. Projekt ArKoNaVera: Sechs Jahre Artenschutz für die Flussperlmuschel (Margaritifera margaritifera). Nat. Und Landsch. 2022, 97, 373–380. [Google Scholar] [CrossRef]
- Hruška, J. Nahrungsansprüche der Flussperlmuschel und deren halbnatürliche Aufzucht in der Tschechischen Republik. Heldia 1999, 4, 69–79. [Google Scholar]
- Dury, P.; Pasco, P.Y.; Capoulade, M. Rearing and reinforcing Freshwater Pearl Mussel of the Armorican Massif. Programme LIFE+ NAT FR 2010–2013, 583. Poster, International Meeting “Improving the environment for the freshwater pearl mussel”, Kefermarkt, Österreich. 13–14 November 2013. Available online: https://www.life-moule-perliere.org/scripts/files/63f810b5317ed8.30261888/2013-11-13_poster_dopdf-br.pdf (accessed on 14 April 2017).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Hruška, J. Problematik der Rettung ausgewählter oligotropher Gewässersysteme und deren natürlicher Lebensgemeinschaften in der Tschechischen Republik. Lindberger Hefte 1995, 5, 98–123. [Google Scholar]
- Quinlan, E.; Gibbins, C.; Malcolm, I.; Batalla, R.; Vericat, D.; Hastie, L. A review of the physical habitat requirements and research priorities needed to underpin conservation of the endangered freshwater pearl mussel Margaritifera margaritifera. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015, 25, 107–124. [Google Scholar] [CrossRef]
- Hyvärinen, H.S.; Chowdhury, M.M.R.; Taskinen, J. Pulsed flow-through cultivation of Margaritifera margaritifera: Effects of water source and food quantity on the survival and growth of juveniles. Hydrobiologia 2021, 848, 3219–3229. [Google Scholar] [CrossRef]
- Guo, F.; Kainz, M.J.; Sheldon, F.; Bunn, S.E. The importance of high-quality algal food sources in stream food webs–current status and future perspectives. Freshw. Biol. 2016, 61, 815–831. [Google Scholar] [CrossRef]
- Guihéneuf, F.; Stengel, D.B. Interactive effects of light and temperature on pigments and n-3 LC-PUFA-enriched oil accumulation in batch-cultivated Pavlova lutheri using high-bicarbonate supply. Algal Res. 2017, 23, 113–125. [Google Scholar] [CrossRef]
- Dunca, E.; Mutvei, H. Comparison of microgrowth pattern in Margaritifera margaritifera shells from south and north Sweden. Am. Malacol. Bull. 2001, 16, 239–250. [Google Scholar]
- Archambault, J.M.; Cope, W.G.; Kwak, T.J. Survival and behaviour of juvenile unionid mussels exposed to thermal stress and dewatering in the presence of a sediment temperature gradient. Freshw. Biol. 2014, 59, 601–613. [Google Scholar] [CrossRef]
- Jost, J.; Helmuth, B. Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic ribbed mussel, and their effects on mussel mortality. Biol. Bull. 2007, 213, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zwieniecki, M.A.; Newton, M. Influence of streamside cover and stream features on temperature trends in forested streams of western Oregon. West. J. Appl. For. 1999, 14, 106–113. [Google Scholar] [CrossRef]
- Newton, T.; Sauer, J.; Karns, B. Water and sediment temperatures at mussel beds in the upper Mississippi River basin. Freshw. Mollusk Biol. Conserv. 2013, 16, 53–62. [Google Scholar] [CrossRef]
- Hitt, N.P.; Snook, E.L.; Massie, D.L. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Can. J. Fish. Aquat. Sci. 2017, 74, 406–418. [Google Scholar] [CrossRef]
- Pandolfo, T.J.; Kwak, T.J.; Cope, W.G. Thermal tolerances of freshwater mussels and their host fishes: Species interactions in a changing climate. Freshw. Mollusk Biol. Conserv. 2012, 15, 69–82. [Google Scholar] [CrossRef]
Experimental Setups | Acronym | Treatments | Exposure | n_Cages | Exposure Duration Month | Results in Figures |
---|---|---|---|---|---|---|
Field mesocosms | ||||||
Surface water cages | SWC | Years: | 2016–2020 | 15 a−1 | ||
Streams: | S1–S5 | 3 stream−1 | 2–3 | |||
Season: | Summer | 60 | 2–3 | 2A and 4B | ||
Autumn | 15 | 3 | ||||
Winter | 40 | 4.5–5.5 | 6 | |||
Interstitial tubes | IT | Years: | 2018–2019 | 45/30 a−1 | ||
Streams: | S1–S5 | 9/6 stream−1 | ||||
Season: | Summer | 75 | 2–2.5 | 2B | ||
Winter | 33 | 5.5 | 6 | |||
Laboratory experiments | n_beakers | |||||
Summer experiment in beakers | LEx_su | Food sources: | S2 and S3 | |||
Temperatures: | 1: 12, 15, 18, 21 °C | 24 | 3 | 3 and 4A | ||
2: 18, 22, 26 °C | 24 | 2 | 4A | |||
Winter experiment in beakers | LEx_wi | Food sources: | S1 and S2 | |||
Temperatures: | 1, 3, 5 °C | 36 | 3.1 | 5 and 6 | ||
Start length: | Group Small | 5 | ||||
Group Large |
Input Variable | Units | Settings for Input Variables/Equation |
---|---|---|
Length after exsystment | µm | L_exsys = 350 |
Growth_summer = f (average water temperature_summer, Tw_su) for 120 days | µm/d | gro_su = a/(1 + exp(−(Tw_su − Tw_su_0)/b)) |
Total growth_autumn Length at beginning of winter | µm µm | gro_aut = 110 L_wi = L_exsys + (gro_su × 120) + gro_aut |
Winter survival | % | surv_wi = a/(1 + exp(−(L_wi − L_wi_0)/b)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, A.; Linke, D.; Grunicke, F.; Berendonk, T.U. Thermal Tolerance and Vulnerability to Climate Change of a Threatened Freshwater Mussel. Diversity 2024, 16, 39. https://doi.org/10.3390/d16010039
Wagner A, Linke D, Grunicke F, Berendonk TU. Thermal Tolerance and Vulnerability to Climate Change of a Threatened Freshwater Mussel. Diversity. 2024; 16(1):39. https://doi.org/10.3390/d16010039
Chicago/Turabian StyleWagner, Annekatrin, Daniel Linke, Felix Grunicke, and Thomas U. Berendonk. 2024. "Thermal Tolerance and Vulnerability to Climate Change of a Threatened Freshwater Mussel" Diversity 16, no. 1: 39. https://doi.org/10.3390/d16010039
APA StyleWagner, A., Linke, D., Grunicke, F., & Berendonk, T. U. (2024). Thermal Tolerance and Vulnerability to Climate Change of a Threatened Freshwater Mussel. Diversity, 16(1), 39. https://doi.org/10.3390/d16010039