Role of Tree Vegetation and Associated Environmental Factors on the Understory Herb-Layer Composition in a Reforested Area: A Study from “Kulon Progo Community Forestry”
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Arrangement
2.4. Statistical Analysis
3. Results
3.1. Effect of Stand Type on Understory Herb-Layer Composition
3.2. Influencing Factors Determining the Understory Herb-Layer Composition
3.2.1. Control of Tree Stand Characteristics and Associated Environmental Factors on Understory Species
3.2.2. Inter-Correlation between Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Species Name | Family Name | Important Value Index | Shading | Distribution | ||||
---|---|---|---|---|---|---|---|---|---|
PN | AS | SA | MA | TD | Characteristic | Category | |||
1 | Dryopteris sp. | Dryopteridaceae | 7.33 | 5.77 | 4.48 | 3.54 | 4.56 | 1 | 1 |
2 | Cytrococum | Poaceae | 23.81 | 17.29 | 24.88 | 24.75 | 3.02 | 2 | 1 |
3 | Ottochloa | Poaceae | 6.35 | 4.74 | 1.38 | 4.73 | 26.89 | 1 | 1 |
4 | Curcuma sp. | Zingeberacerae | 2.25 | 4.53 | 0.00 | 2.90 | 1.10 | 3 | 1 |
5 | Urena lobata | Malvaceae | 1.48 | 1.25 | 2.37 | 5.06 | 1.85 | 2 | 1 |
6 | Clidemia hirta | Melastomaceae | 6.35 | 2.72 | 6.59 | 5.26 | 4.39 | 3 | 1 |
7 | Borreria latifolia | Rubiaceae | 1.41 | 0.00 | 0.00 | 0.88 | 0.00 | 1 | 2 |
8 | Elletaria cardomomum | Zingeberacerae | 1.41 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 3 |
9 | Impatiens balsamina | Balsaminaceae | 1.48 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 3 |
10 | Andrographis paniculata | Acanthaceae | 3.10 | 5.09 | 2.46 | 0.00 | 6.99 | 1 | 2 |
11 | Colocasia gigantea | Araceae | 1.62 | 2.26 | 0.73 | 0.00 | 0.00 | 2 | 2 |
12 | Slaginella sp. | Slaginellaceae | 9.31 | 4.97 | 0.00 | 2.63 | 0.00 | 2 | 2 |
13 | Coctus spicatus | Costaceae | 1.69 | 1.36 | 0.73 | 0.74 | 0.00 | 2 | 2 |
14 | Scleria sp. | Poaceae | 1.90 | 0.00 | 0.00 | 4.99 | 0.86 | 3 | 2 |
15 | Euphorbia hirta | Euphorbiaceae | 0.92 | 3.17 | 1.55 | 0.00 | 0.00 | 3 | 2 |
16 | Eupatorium odoratum | Asteraceae | 5.42 | 0.00 | 2.13 | 0.81 | 1.58 | 3 | 2 |
17 | Oxalis corniculata | Oxalidaceae | 0.63 | 1.47 | 0.82 | 0.00 | 0.74 | 2 | 2 |
18 | Stachytarpheta jamaicensis | Verbenaceae | 0.00 | 0.00 | 1.73 | 1.82 | 0.00 | 3 | 2 |
19 | Spilanthes paniculata | Asteraceae | 3.45 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 3 |
20 | Pennisetum purpureum | Poaceae | 0.63 | 0.00 | 2.30 | 2.90 | 1.46 | 2 | 2 |
21 | Commelina benghalensis | Clommelinaceae | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 3 |
22 | Lantana camara | Verbenaceae | 0.70 | 1.70 | 1.10 | 4.99 | 1.61 | 2 | 2 |
23 | Setaria viridis | Poaceae | 1.13 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 3 |
24 | Phylanthus urinaria | Fabaceae | 0.00 | 1.15 | 0.82 | 3.17 | 0.00 | 3 | 2 |
25 | Acalypha australis | Euphorbiaceae | 1.69 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 3 |
26 | Imperata cylindrica | Poaceae | 1.27 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 3 |
27 | Centrosema sp. | Fabaceae | 0.63 | 5.66 | 3.38 | 3.51 | 4.56 | 2 | 1 |
28 | Passiflota foetida | Passifloraceae | 0.00 | 0.91 | 0.00 | 0.00 | 0.00 | 2 | 3 |
29 | Ficus montana | Moraceae | 0.00 | 1.81 | 0.00 | 0.00 | 0.00 | 3 | 3 |
30 | Almorphophallus muelleri | Araceae | 0.00 | 0.91 | 0.00 | 0.00 | 0.00 | 2 | 3 |
31 | Panicum repens | Poaceae | 0.00 | 2.15 | 0.00 | 0.88 | 0.00 | 2 | 2 |
32 | Melastoma cadidum | Melastomaceae | 0.00 | 2.26 | 1.76 | 2.16 | 1.97 | 3 | 2 |
33 | Ageratum conyzoides | Asteraceae | 0.00 | 7.57 | 2.84 | 8.91 | 3.19 | 3 | 2 |
34 | Mimosa pudica | Fabaceae | 0.00 | 1.25 | 0.00 | 0.00 | 0.00 | 3 | 3 |
35 | Elephantopus scaber | Asteraceae | 0.00 | 1.93 | 1.10 | 0.00 | 0.00 | 2 | 2 |
36 | Cymbopogon citratus | Poaceae | 0.00 | 1.92 | 1.01 | 2.29 | 0.00 | 2 | 2 |
37 | Flemingia macrophylla | Fabaceae | 0.00 | 0.00 | 0.00 | 1.15 | 0.86 | 2 | 2 |
38 | Hyptis capitata | Lamiaceae | 0.00 | 2.26 | 1.83 | 0.00 | 0.00 | 3 | 2 |
39 | Stenochlaena palustris | Blechnaceae | 0.00 | 0.00 | 2.49 | 0.00 | 0.00 | 2 | 3 |
40 | Hibiscus rosa-sinensis | Malvaceae | 0.00 | 0.00 | 0.82 | 0.00 | 0.00 | 2 | 3 |
41 | Cynodon dactylon | Poaceae | 0.00 | 0.00 | 10.22 | 0.00 | 0.98 | 3 | 2 |
42 | Mikania micrantha | Asteraceae | 0.00 | 0.00 | 2.20 | 0.00 | 0.00 | 3 | 3 |
43 | Tinospora cordifolia | Menispermaceae | 0.00 | 0.00 | 0.00 | 0.00 | 1.85 | 1 | 3 |
44 | Pteris ensiformis | Pteridaceae | 0.00 | 0.00 | 1.10 | 0.00 | 0.00 | 1 | 3 |
45 | Cosmos caudatus | Coreopsideae | 0.00 | 0.00 | 0.91 | 0.00 | 0.00 | 1 | 3 |
46 | Gynura procumbens | Asteraceae | 0.00 | 0.00 | 0.00 | 0.88 | 0.00 | 2 | 3 |
47 | Cynoglosum sp. | Boraginaceae | 0.00 | 0.00 | 1.01 | 0.00 | 0.00 | 1 | 3 |
48 | Wedelia trilobata | Asteraceae | 0.00 | 0.00 | 1.29 | 0.00 | 1.22 | 3 | 2 |
49 | Peperonema pellucida | Piperaceae | 0.00 | 0.00 | 0.00 | 0.00 | 0.74 | 1 | 3 |
50 | Lygodium circinnatum | Lygodiaceae | 0.00 | 0.00 | 0.00 | 1.62 | 2.35 | 2 | 2 |
51 | Portulaca sp. | Portulacaceae | 0.00 | 0.00 | 0.82 | 0.00 | 0.00 | 3 | 3 |
52 | Andiatum caudatum | Andiataceae | 0.00 | 0.00 | 0.00 | 0.74 | 0.00 | 2 | 3 |
53 | Crassocephalum crepidioides | Asteraceae | 0.00 | 0.00 | 0.00 | 0.74 | 0.86 | 3 | 2 |
54 | Clausena excavata | Rutaceae | 0.00 | 0.00 | 0.00 | 0.00 | 0.74 | 2 | 3 |
55 | Bauhinia sp. | Fabaceae | 0.00 | 0.00 | 0.00 | 0.00 | 4.80 | 1 | 3 |
56 | Cleome rutidosperma | Cleomaceae | 0.00 | 1.47 | 0.00 | 0.00 | 0.86 | 2 | 2 |
57 | Clitoria ternatea | Fabaceae | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | 2 | 3 |
58 | Nephrolepis bisserata | Pteridacerae | 0.00 | 0.00 | 0.00 | 0.00 | 2.71 | 2 | 3 |
59 | Syzigium aromaticum | Myrtaceae | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 3 |
60 | Pinus merkusii * | Pinaceae | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 3 |
61 | Macaranga sp. * | Euphorbiaceae | 2.39 | 1.00 | 1.73 | 2.70 | 1.85 | 2 | 2 |
62 | Dalbergia latifolia * | Fabaceae | 2.95 | 0.00 | 2.65 | 2.43 | 5.04 | 1 | 2 |
63 | Swietenia macrophyla * | Meliaceae | 0.63 | 6.68 | 3.47 | 0.74 | 3.10 | 1 | 1 |
64 | Gmelina elliptica * | Lamiaceae | 0.00 | 0.00 | 0.00 | 0.00 | 4.08 | 2 | 2 |
65 | Tectona grandis * | Lamiaceae | 0.00 | 0.91 | 0.00 | 0.00 | 1.49 | 3 | 2 |
66 | Ardisi elliptica | Primulaceae | 4.50 | 2.04 | 1.92 | 0.00 | 0.74 | 1 | 2 |
67 | Parkia speciosa * | Fabaceae | 0.00 | 0.00 | 1.10 | 0.00 | 0.00 | 2 | 3 |
68 | Genetum genemon * | Genetaceae | 0.00 | 0.91 | 0.00 | 0.00 | 0.00 | 1 | 3 |
69 | Ficus septica * | Moraceae | 1.27 | 0.91 | 0.73 | 0.00 | 0.00 | 1 | 2 |
70 | Acacia auriculiformis * | Fabaceae | 0.00 | 0.00 | 0.82 | 0.74 | 0.00 | 1 | 2 |
71 | Leucaena leucocephala * | Fabaceae | 0.00 | 0.00 | 0.73 | 0.00 | 0.00 | 2 | 3 |
72 | Paraserientes falcataria * | Fabaceae | 0.00 | 0.00 | 0.00 | 1.35 | 0.00 | 2 | 3 |
100 | 100 | 100 | 100 | 100 |
Stand Type | Tree Regeneration Species | |||||||
---|---|---|---|---|---|---|---|---|
Number of Seedling Species | Species | Family | Density (n/ha) | RS | ||||
Seedling | Sapling | Pole | Tree | |||||
PN | 2 | P. merkusii | Lauraceae | 1786 | - | 14 | 311 | |
Other species | 14,285 | 886 | 186 | 164 | Good | |||
Total | 16,071 | 886 | 200 | 375 | Good | |||
AS | 1 | A. molucana | Euphorbiaceae | - | - | - | 104 | None |
S. macrophylla | Euphorbiaceae | 7188 | 343 | 167 | 32 | Good | ||
Other species | 3512 | 685 | 176 | 68 | ||||
Total | 10,700 | 1028 | 343 | 204 | Good | |||
SA | 2 | S. macrophylla | Moraceae | 1875 | 686 | 229 | 54 | Good |
A. auriculiformis | Euphorbiaceae | 2083 | 171 | 14 | 54 | Good | ||
Other species | 9242 | 985 | 285 | 124 | Good | |||
Total | 13,200 | 1842 | 528 | 232 | Good | |||
MA | 1 | M. Leucadendron | Moraceae | - | - | 186 | 79 | None |
A. auriculiformis | Euphorbiaceae | 682 | 29 | 67 | 36 | Good | ||
Other species | 7868 | 1113 | 147 | 36 | Good | |||
Total | 8550 | 1142 | 400 | 154 | Good | |||
TD | 2 | D. latifolia | Moraceae | 3958 | 514 | 167 | 118 | Good |
T. grandis | Euphorbiaceae | - | 57 | 67 | 74 | Poor | ||
Other species | 5684 | 400 | 195 | 19 | Good | |||
Total | Euphorbiaceae | 9642 | 971 | 429 | 211 | Good |
References
- Nilsson, M.; Wardle, D.A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 2005, 3, 421–428. [Google Scholar] [CrossRef]
- Jules, M.J.; Sawyer, J.O.; Jules, E.S. Assessing the relationships between stand development and understory vegetation using a 420-year chronosequence. For. Ecol. Manag. 2008, 255, 2384–2393. [Google Scholar] [CrossRef]
- Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Hubau, W.; De Mil, T.; Van den Bulcke, J.; Phillips, O.L.; Angoboy Ilondea, B.; Van Acker, J.; Sullivan, M.J.P.; Nsenga, L.; Toirambe, B.; Couralet, C.; et al. The persistence of carbon in the African forest understory. Nat. Plants 2019, 5, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Landuyt, D.; De Lombaerde, E.; Perring, M.P.; Hertzog, L.R.; Ampoorter, E.; Maes, S.L.; De Frenne, P.; Ma, S.; Proesmans, W.; Blondeel, H. The functional role of temperate forest understorey vegetation in a changing world. Glob. Chang. Biol. 2019, 25, 3625–3641. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 2010, 91, 1931–1938. [Google Scholar] [CrossRef]
- Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
- Malik, Z.A.; Bhatt, A.B. Regeneration status of tree species and survival of their seedlings in Kedarnath Wildlife Sanctuary and its adjoining areas in Western Himalaya, India. Trop. Ecol. 2016, 57, 677–690. [Google Scholar]
- Wahyuni, I. Distribution of invasive plant species in different land-use systems in Sumatera, Indonesia. Biotropia 2016, 23, 127–135. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Huang, N.; Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 2018, 23, 112–119. [Google Scholar] [CrossRef]
- Siswo, S.; Yun, C.W.; Kim, H.; Lee, J.; Atmoko, B.D.; Brahmantya, L. Assessing herb layer composition under jungle rubber in Sungai Manau Forest, Jambi, Indonesia: Indicator species and tree regeneration potential. Biodiversitas 2022, 23. [Google Scholar] [CrossRef]
- Beukema, H.; van Noordwijk, M. Terrestrial pteridophytes as indicators of a forest-like environment in rubber production systems in the lowlands of Jambi, Sumatra. Agric. Ecosyst. Environ. 2004, 104, 63–73. [Google Scholar] [CrossRef]
- Böhnert, T.; Wenzel, A.; Altenhövel, C.; Beeretz, L.; Tjitrosoedirdjo, S.S.; Meijide, A.; Rembold, K.; Kreft, H. Effects of land-use change on vascular epiphyte diversity in Sumatra (Indonesia). Biol. Conserv. 2016, 202, 20–29. [Google Scholar] [CrossRef]
- Udayana, C.; Andreassen, H.P.; Skarpe, C. Understory diversity and composition after planting of teak and mahogany in Yogyakarta, Indonesia. J. Sustain. For. 2020, 39, 494–510. [Google Scholar] [CrossRef]
- Wu, H.F.; Gao, T.; Zhang, W.; Li, G.; Hao, W.F. Understory Vegetation Composition and Stand Are Mainly Limited by Soil Moisture in Black Locust Plantations of Loess Plateau. Forests 2021, 12, 195. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved— A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Pilon, N.A.; Durigan, G.; Rickenback, J.; Pennington, R.T.; Dexter, K.G.; Hoffmann, W.A.; Abreu, R.C.; Lehmann, C.E. Shade alters savanna grass layer structure and function along a gradient of canopy cover. J. Veg. Sci. 2021, 32, e12959. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, M.; Yin, F.; Zhang, M.-J.; Wei, J. Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City. Forests 2022, 13, 1310. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, Z.; Ji, X. Vegetation succession process induced by reforestation in erosion areas. Front. For. China 2008, 3, 279–285. [Google Scholar] [CrossRef]
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of degraded tropical forest landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef]
- Ou, Z.; Pang, S.; He, Q.; Peng, Y.; Huang, X.; Shen, W. Effects of vegetation restoration and environmental factors on understory vascular plants in a typical karst ecosystem in southern China. Sci. Rep. 2020, 10, 12011. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.A.; Chen, H.Y.H. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 2006, 25, 381–397. [Google Scholar] [CrossRef]
- Huo, H.; Feng, Q.; Su, Y.H. The influences of canopy species and topographic variables on understory species diversity and composition in coniferous forests. Sci. World J. 2014, 1, 252489. [Google Scholar] [CrossRef] [PubMed]
- Thammanu, S.; Marod, D.; Han, H.; Bhusal, N.; Asanok, L.; Ketdee, P.; Gaewsingha, N.; Lee, S.; Chung, J. The influence of environmental factors on species composition and distribution in a community forest in Northern Thailand. J. For. Res. 2020, 32, 649–662. [Google Scholar] [CrossRef]
- Siswo; Yun, C.-W.; Abdiyani, S. Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests 2019, 10, 825. [Google Scholar] [CrossRef]
- De Steven, D.; Faulkner, S.P.; Keeland, B.D.; Baldwin, M.J.; McCoy, J.W.; Hughes, S.C. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, USA. Restor. Ecol. 2015, 23, 402–412. [Google Scholar] [CrossRef]
- Udayana, C.; Andreassen, H.P.; Skarpe, C. Wood and non-wood forest products of Central Java, Indonesia. J. Sustain. For. 2019, 38, 715–732. [Google Scholar] [CrossRef]
- Mahfudz; Rahman, T.; Lukmansjah, D. (Eds.) Statistik Kementeria n Lingkungan Hidup dan Kehutanan Tahun 2019 [Ministry of Environment and Forestry Statistics for 2019]; Kementerian Lingkungan Hidup dan kehutanan [Ministry of Environment and Forestry]: Jakarta, Indonesia, 2020. [Google Scholar]
- Nawir, A.A.; Rumboko, L. Forest Rehabilitation in Indonesia: Where to after More Than Three Decades? Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2007. [Google Scholar]
- HKm Mandiri. Profil Kelompok Tani Hutan Kemasyarakatan [Profile of Community Forest Farmer Groups]; HKm Mandiri: Yogyakarta, Indonesia, 2022. [Google Scholar]
- Siswo; Atmoko, D.A.; Brahmantya, L.; Pahlana, U.W.; Yun, C.W. Overseas Forest Survey; Tree Species Distribution and the Rela-tionship to Environmental Factors in the Protected Forest of Kulon Progo Community Forestry; Report; Kongju National University: Yesan-gun, Republic of Korea, 2022. [Google Scholar]
- Siswo; Kim, H.; Lee, J.; Yun, C.-W. Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia. Forests 2023, 14, 365. [Google Scholar] [CrossRef]
- Hadi, E.E.W.; Widyastuti, S.M.; Wahyuono, S. Keanekaragaman Dan Pemanfaatan Tumbuhan Bawah Pada Sistem Agroforestri Di Perbukitan Menoreh, Kabupaten Kulon Progo [Diversity and Untilization of Understorey in Agroforestry System of Menoreh Hill, Kulon Progo Regency]. J. People Environ. 2016, 23, 206–214. [Google Scholar] [CrossRef][Green Version]
- Zuhri, S. Keanekaragaman Jenis Tumbuhan Bawah Pada Lahan Andil Kelompok Tani Hutan “Mandiri” di Kalibiru, Kabupaten Kulon Progo [Diversity of Understorey Species on the Utilization Permits of the “Mandiri” Forest Farmer Group in Kalibiru, Kulon Progo Regency]. Ph.D. Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2021. [Google Scholar]
- Balai KPH Yogyakarta. Ringkasan Eksekutif Rencana Pengelolaan KPH Yogykarta Jangka Tahun 2014–2023 [Executive Summary of the KPH Yogyakarta Management Plan for the 2014–2023 Term]; Balai Kesatuan Pengelolaan Hutan: Yogyakarta, Indonesia, 2013. [Google Scholar]
- Arsalan, A.; Gravitiani, E.; Irianto, H. Biomassa di Atas Tanah dan Penghitungan Simpanan Karbon Hutan Kalibiru Kabupaten Kulon Progo [Aboveground Biomass and Calculation of Carbon Stores in the Kalibiru Forest, Kulon Progo Regency]. J. Penelit. Biol. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- BPS Kabupaten Kulon Progo. Kabupaten Kulon Progo Dalam Angka Tahun 2021 [Kulon Progo Regency in Figures for 2021]; Biro Pusat Statistik: Kulon Progo, Indonesia, 2022. [Google Scholar]
- Climate Engine. Computing Climate and Remote Sensing Data. Available online: https://app.climateengine.com/climateEngine (accessed on 22 September 2022).
- Wikipedia. Sejarah Terjadinya Hutan Negara di Kulon Progo. Available online: https://id.wikipedia.org/wiki/Kalibiru (accessed on 22 September 2022).
- Kementerian Kehutanan. Keputusan Menteri Kehutanan no SK.437/Menhut-II/2007 Tentang Penetapan Areal Kerja Hutan Kemasyarakatan di Kabupaten Kulon Progo Provinsi Daerah Istimewa Yogyakarta [Decree of the Minister of Forestry no SK.437/Menhut-II/2007 Regarding the Determination of Community Forestry Areas in Kulon Progo Regency, Special Teritory of Yogyakarta Province]; Kemeterian Kehutanan [Ministry of Forestry]: Jakarta, Indonesia, 2007. [Google Scholar]
- Kusmana, C. Metode Survey Vegetasi [Vegetation Survey Method]; Institut Pertanian Bogor: Bogor, Indonesia, 1997. [Google Scholar]
- Backer, C.A.; Van-Den- Bakhuizen, B. Flora of Java (Spermatophytes Only); Nordhoff: Groningen, The Nederland, 1963. [Google Scholar]
- Yudhoyono, A.; Sukarya, D.G. 3500 Plant Species of the Botanic Gardens of Indonesia; PT. Sukarya dan Sukarya Pendetama: Jakarta, Indonesia, 2013. [Google Scholar]
- Kudo, Y.; Mutaqien, Z.; Simbolon, H.; Suzuki, E. Spread of invasive plants along trails in two national parks in West Java, Indonesia. Tropics 2014, 23, 99–110. [Google Scholar] [CrossRef]
- GISD 2022. Invasive Species Specialist Group. Available online: http://www.iucngisd.org/gisd/search.php (accessed on 19 January 2022).
- Setyawati, T.; Narulita, S.; Bahri, I.P.; Raharjo, G.T. A Guide Book to Invasive Alien Plant Species in Indonesia; Research, Development and Innovation Agency. Ministry of Environment and Forestry: Bogor, Indonesia, 2015. [Google Scholar]
- Dar, J.A.; Subashree, K.; Sundarapandian, S.; Saikia, P.; Kumar, A.; Khare, P.K.; Dayanadan, S.; Khan, M.L. Invasive Species and Their Impact on Tropical Forests of Central India: A Review. In Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change; Springer: Singapore, 2019; pp. 69–109. [Google Scholar] [CrossRef]
- Sarkar, M.; Devi, A. Assessment of diversity, population structure and regeneration status of tree species in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India. Trop. Plant Res. 2014, 1, 26–36. [Google Scholar]
- Nelson, J.; Noweg, T. Assessment of Forest Regeneration following series of disturbances in two types of primary forest at Bungo Range, Bau, Sarawak. J. Trop. For. Sci. 2021, 33, 126–136. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MJM Software Design: Corvallis, OR, USA, 2002. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Malden, MA, USA, 2004. [Google Scholar]
- Peck, J.E. Multivariate Analysis for Community Ecologists; MJM Software Design: Corvallis, OR, USA, 2010. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Cardinal, R.N.; Aitken, M.R. ANOVA for the Behavioral Sciences Researcher; Psychology Press: London, UK, 2013. [Google Scholar]
- Cleophas, T.J.; Zwinderman, A.H. Non-Parametric Tests for Three or More Samples (Friedman and Kruskal Wallis); Clinical Data Analysis on a Poscket Calculator; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ter Braak, C.J.; Verdonschot, P.F. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 1995, 57, 255–289. [Google Scholar] [CrossRef]
- Møller, A.; Jennions, M.D. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 2022, 132, 492–500. [Google Scholar] [CrossRef]
- Abood, S.A.; Lee, J.S.H.; Burialova, Z.; Garcia-Ulloa, J.; Koh, L.P. Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv. Lett. 2015, 8, 58–67. [Google Scholar] [CrossRef]
- Meijide, A.; Badu, C.S.; Moyano, F.; Tiralla, N.; Gunawan, D.; Knohl, A. Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agric. For. Meteorol. 2018, 252, 208–219. [Google Scholar] [CrossRef]
- Osborne, B.; Nasto, M.K.; Soper, F.M.; Asner, G.P.; Balzotti, C.S.; Cleveland, C.C.; Taylor, P.G.; Townsend, A.R.; Porder, S. Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest. Biogeochemistry 2020, 147, 293–306. [Google Scholar] [CrossRef]
- Ehrlén, J.; Eriksson, O. Dispersal limitation and patch occupancy in forest herbs. Ecology 2000, 81, 1667–1674. [Google Scholar] [CrossRef]
- Ismaini, L. Pengaruh alelopati tumbuhan invasif (Clidemia hirta) terhadap germinasi biji tumbuhan asli (Impatiens platypetala) [Effect of invasive plant allelopathy (Clidemia hirta) on seed germination of native plants (Impatiens platypetala)]. Pros. Sem. Nas. Masy. Biodiv. Indon. 2015, 1, 834–837. [Google Scholar]
- Breaden, R.C.; Brooks, S.J.; Murphy, H.T. The biology of Australia weeds Clidemia hirta (L.) D.Don. Plant Prot. Q. 2012, 27, 3–18. [Google Scholar]
- Brown, J.H. Why are there so many species in the tropics? J. Biogeogr. 2014, 41, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Scales of ecological engineering. Ecol. Eng. 1996, 6, 7–19. [Google Scholar] [CrossRef]
- Su, X.; Wang, M.; Huang, Z.; Fu, S.; Chen, H.Y. Forest understorey vegetation: Colonization and the availability and heterogeneity of Resources. Forests 2019, 10, 944. [Google Scholar] [CrossRef]
- Rembold, K.; Mangopo, H.; Tjitrosoedirdjo, S.S.; Kreft, H. Plant diversity, forest dependency, and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. 2017, 213, 234–242. [Google Scholar] [CrossRef]
- Indriyanto. Ekologi Hutan [Forest Ecology]; Bumi Aksara: Jakarta, Indonesia, 2008. [Google Scholar]
- Aoyagi, R.; Imai, N.; Kitayama, K. Ecological significance of the patches dominated by pioneer trees for the regeneration of dipterocarps in a Bornean logged-over secondary forest. For. Ecol. Manag. 2013, 289, 378–384. [Google Scholar] [CrossRef]
- Yassir, I. Diversity of plant communities in secondary succession of Imperata grasslands in Samboja Lestari, East Kalimantan, Indonesia. Indones. J. For. Res. 2014, 1, 139–149. [Google Scholar] [CrossRef][Green Version]
- Freeman, C. The impact of treefall gaps on the species richness of invasive plants. J. Young Investig. 2015, 28, 1. [Google Scholar]
- Waheed, M.; Haq, S.M.; Fatima, K.; Arshad, F.; Bussmann, R.W.; Masood, F.R.; Alataway, A.; Dewidar, A.Z.; Almutairi, K.F.; Elansary, H.O.; et al. Ecological Distribution Patterns and Indicator Species Analysis of Climber Plants in Changa Manga Forest Plantation. Diversity 2022, 14, 988. [Google Scholar] [CrossRef]
- EOS Data Analytics. Type of Soil in Agriculture to Grow Crops Efficiency. Available online: https://eos.com/blog/types-of-soil/ (accessed on 19 July 2023).
- Janzen, H.H. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol. Biochem. 2006, 38, 419–424. [Google Scholar] [CrossRef]
- Pereira, H.; Navarro, L.; Martins, I. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 2012, 37, 25–50. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Tatarko, J.; Tan, X. Influence of vegetation restoration on soil physical properties in the Loess Plateau, China. J. Soils Sediments 2019, 19, 716–728. [Google Scholar] [CrossRef]
- Labrière, N.; Locatelli, B.; Laumonier, Y.; Freycon, V.; Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 2015, 203, 127–139. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Sun, C. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur. J. Soil Biol. 2013, 54, 16–24. [Google Scholar] [CrossRef]
- Hu, P.L.; Liu, S.J.; Ye, Y.Y.; Zhang, W.; Wang, K.L.; Su, Y.R. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Chengrui, M.; Dregne, H.E. Review article: Silt and the future development of China’s Yellow River. Geogr. J. 2001, 167, 7–22. [Google Scholar] [CrossRef]
- Roose, E.J.R.; Lal, C.; Feller, B.; Barthes; Stewart, B.A. Advances in Soil Science: Soil Erosion and Carbon Dynamics; CRC Press, Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2006; Volume 352, p. 88. [Google Scholar]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Wenjie, L.; Pengju, L.; Hongmei, L.; Weinping, D. Estimation of evaporation rate from soil surface using stable isotopic com-position of throughfall and stream water in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Acta Ecol. Sin. 2016, 26, 1303–1310. [Google Scholar] [CrossRef]
- Fan, J.; Ostergaard, K.T.; Guyot, A.; Fujiwara, S.; Lockington, D.A. Estimating groundwater evapotranspiration by a sub-tropical pine plantation using diurnal water table fluctuations: Implication from night-time water use. J. Hydrol. 2016, 542, 679–685. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Sun, X.; Yu, X. Variations of forest soil organic carbon and its influencing factors in east China. Ann. For. Sci. 2016, 73, 501–511. [Google Scholar] [CrossRef]
- Devi, A.S. Influence of trees and associated variables on soil organic carbon: A review. J. Ecol. Environ. 2021, 45, 5. [Google Scholar] [CrossRef]
- Joshi, L.; Wibawa, G.; Vincent, G.; Boutin, D.; Akiefnawati, R.; Manurung, G.; Van-Noordwijk, M.; Williams, S. Jungle Rubber; World Agroforestry Center: Bogor, Indonesia, 2002. [Google Scholar]
Items | PN | AS | SA | MA | TD | Note |
---|---|---|---|---|---|---|
| ||||||
| PM | AM, SM | AA, SM | ML, AA | DL, TG | |
| 8 | 6 | 15 | 10 | 10 | |
| 0.48 a | 0.54 b | 1.11 b | 1.07 b | 0.75 b | ** |
| 27.61 a | 17.56 a | 15.94 a | 19.91 a | 23.55 a | * |
| 375 a | 204 b | 232 b | 15 b | 211 b | * |
| 28.14 a | 19.29 b | 21.29 ab | 21 ab | 27.14 a | * |
| 68.43 a | 75.5 abc | 74.29 abc | 59.71 ab | 85.43 c | ** |
| ||||||
| 244 a | 353 a | 303 a | 319 a | 307 a | ** |
| 28 a | 31 a | 32 a | 32 a | 34 a | ** |
| 18 a | 22 a | 16 a | 19 a | 17 | ** |
| ||||||
| 37.00 a | 30.04 bc | 36.65 ab | 31.35 c | 35.76 ab | ** |
| 25.52 a | 31.26 a | 22.67 a | 29.76 a | 24.77 a | ** |
| 37.5 a | 38.7 a | 40.67 a | 38.89 a | 39.46 a | ** |
| 1.14 a | 1.15 a | 1.19 a | 1.15 a | 1.18 a | * |
| 6.11 a | 6.15 a | 6.17 a | 6.31 a | 6.38 a | * |
| 1.05 a | 1.33 ab | 1.17 ab | 0.99 a | 1.72 b | * |
| 0.20 a | 0.2 ab | 0.26 b | 0.22 ab | 0.24 ab | * |
| ||||||
| 40 a | 54.29 a | 39.29 a | 45 a | 25.71 b | ** |
| 122 a | 143.57 a | 200.71 a | 236.29 a | 255.71 a | * |
| 125.71 a | 331.57 b | 347.29 b | 384.43 b | 344.14 b | ** |
No | Comparison of the Sorensen Distance | T | A | p-Value |
---|---|---|---|---|
1 | General Comparison | −7.05 | 0.19 | 0.000 |
2 | Pairwise Comparison: | |||
PN vs. AS | −1.65 | 0.05 | 0.066 | |
PN vs. SA | −5.73 | 0.16 | 0.000 | |
PN vs. MA | −3.34 | 0.08 | 0.006 | |
PN vs. TD | −5.97 | 0.32 | 0.001 | |
AS vs. SA | −1.47 | 0.04 | 0.085 | |
AS vs. MA | 0.44 | 0.01 | 0.576 | |
AS vs. TD | −4.81 | 0.22 | 0.002 | |
SA vs. MA | −0.89 | 0.02 | 0.162 | |
SA vs. TD | −6.13 | 0.29 | 0.001 | |
MA vs. TD | −3.49 | 0.17 | 0.012 |
Stand Type | Species | Ival | p Value | Typical |
---|---|---|---|---|
PN | Slaginella sp. Spilanthes paniculata | 48.7 71.4 | 0.005 0.000 | Semi-shade-tolerant Shade-intolerant |
AS | Swietenia macrophylla | 46.5 | 0.008 | Shade-tolerant |
SA | Cynodon dactylon | 54.6 | 0.003 | Shade-intolerant |
MA | Ageratum conyzoides Lantana camara Scleira sp. | 43.6 31.4 27.1 | 0.020 0.024 0.000 | Shade-intolerant Shade-intolerant Shade-intolerant |
TD | Ottochloa nodosa Andrographis paniculata Bauhinia sp. Nephrolepis sp. Dalbergia latifolia Gmelina elliptica | 60.2 34.4 71.4 42.9 46.5 71.4 | 0.001 0.006 0.000 0.031 0.045 0.000 | Shade-tolerant Semi-shade-tolerant Semi-shade-tolerant Semi-shade-tolerant Shade-tolerant Semi-shade-tolerant |
Axis 1 | Axis 2 | Axis 3 | |
---|---|---|---|
Summary statistic: | |||
Eigenvalues | 0.436 | 0.336 | 0.281 |
Variance Explained (%) | 10.200 | 7.800 | 6.500 |
Cumulative explained (%) | 10.200 | 18.000 | 24.500 |
Pearson correlation | 0.925 | 0.900 | 0.929 |
Variables | Veg-H’ | Veg-BA | Veg-Dy | Veg-CH | Veg-CC | Top-Alt | Top-Slope | Ed-Silt | Ed-Sand | Ed-SOC | Ed-TN | Ant-BsU | Ant-River |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Veg-H’ | −0.29 ns | −0.147 ns | −0.290 ns | 0.100 ns | 0.210 ns | 0.388 * | −0.002 ns | 0.025 ns | 0.125 ns | 0.480 ** | −0.184 ns | 0.434 ** | |
Veg-BA | - | 0.602 ** | 0.243 ns | 0.382 * | 0.092 ns | −0.189 ns | 0.171 ns | −0.380 * | 0.131 ns | 0.087 ns | −232 ns | 0.300 ns | |
Veg-Dy | - | - | 0.329 ns | 0.265 ns | −0.195 ns | −420 * | 0.511 ** | −0.305 ns | 0.098 ns | −0.053 ns | −0.287 ns | −0.292 ns | |
Veg-CH | - | - | - | 0.125 ns | −0.366 * | −0.308 ns | 0.261 ns | −0.220 ns | 0.088 ns | −246 ns | −561 ** | −0.268 ns | |
Veg-CC | - | - | - | - | 0.242 ns | −0.172 ns | 0.362 * | −0.259 ns | 0.686 ** | 0.269 ns | −436 * | 0.149 ns | |
Top-Alt | - | - | - | - | - | 0.479 ** | −0.142 ns | −0.102 ns | −0.034 ns | 0.111 ns | 0.065 ns | 0.614 ** | |
Top-slope | - | - | - | - | - | - | −0.339 * | −0.033 ns | −0.198 ns | 0.130 ns | 0.199 ns | 0.524 ** | |
Ed-Silt | - | - | - | - | - | - | - | −0.033 v | 0.311 ns | 0.120 ns | −0.330 ns | −0.264 ns | |
Ed-sand | - | - | - | - | - | - | - | - | −0.065 ns | 0.140 ns | 0.282 ns | −0.210 ns | |
Ed-SOC | - | - | - | - | - | - | - | - | - | 0.233 ns | −0.327 ns | −0.22 ns | |
Ed-TN | - | - | - | - | - | - | - | - | - | - | −0.141 ns | 0.004 ns | |
Ant-BsU | - | - | - | - | - | - | - | - | - | - | - | −0.070 ns | |
Ant-River | - | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siswo; Yun, C.-W.; Lee, J. Role of Tree Vegetation and Associated Environmental Factors on the Understory Herb-Layer Composition in a Reforested Area: A Study from “Kulon Progo Community Forestry”. Diversity 2023, 15, 900. https://doi.org/10.3390/d15080900
Siswo, Yun C-W, Lee J. Role of Tree Vegetation and Associated Environmental Factors on the Understory Herb-Layer Composition in a Reforested Area: A Study from “Kulon Progo Community Forestry”. Diversity. 2023; 15(8):900. https://doi.org/10.3390/d15080900
Chicago/Turabian StyleSiswo, Chung-Weon Yun, and Jeongeun Lee. 2023. "Role of Tree Vegetation and Associated Environmental Factors on the Understory Herb-Layer Composition in a Reforested Area: A Study from “Kulon Progo Community Forestry”" Diversity 15, no. 8: 900. https://doi.org/10.3390/d15080900
APA StyleSiswo, Yun, C.-W., & Lee, J. (2023). Role of Tree Vegetation and Associated Environmental Factors on the Understory Herb-Layer Composition in a Reforested Area: A Study from “Kulon Progo Community Forestry”. Diversity, 15(8), 900. https://doi.org/10.3390/d15080900