Role of Seed Banks in Supporting Ecosystem and Biodiversity Conservation and Restoration
Abstract
:1. Introduction
2. Importance of Seed Banks in Genetic Resource Conservation and Supporting Ecosystem Restoration
3. Existing and Potential Technical and Infrastructural Capacity
3.1. Access to Wide Genetic Diversity of Restoration Species
3.2. Availability of Information and Data
3.3. Seed Sourcing Capacity
Species | Number of Accessions | Number of Provenances |
---|---|---|
Acacia nilotica | 9 | 8 |
Acacia senegal | 8 | 7 |
Acacia seyal | 4 | 4 |
Adansonia digitari | 2 | 2 |
Balanites aegyptica | 6 | 4 |
Tamarindus indica | 3 | 2 |
Ziziphus mauritiana | 1 | 1 |
Andropogon gayanus | 28 | 2 |
Cymbopogon giganteus | 3 | 1 |
Cenchrus biflorus | 1 | 1 |
Chamaecrista mimosoides | 3 | 3 |
Cymbopogon giganteus | 3 | 1 |
Diospyros mespiliformis | 2 | 2 |
Grewia bicolor | 1 | 1 |
Sclerocarya birrea | 2 | 2 |
Strychnos spinosa | 3 | 3 |
Stylosanthes hamata | 34 | 3 |
Stylosanthes mucronata | 5 | 3 |
Clitroia ternatea | 393 | 20 |
Stylosanthes guianensis | 750 | 11 |
Macroptilium atropurpureum | 163 | 11 |
Neonotonia wightii | 436 | 25 |
3.4. Seed Processing
3.5. Seed Drying
3.6. Seed Storage
3.7. Seed Quality Assurance and Control
3.8. Experience and Capacity in Facilitating Germplasm Exchange
4. Role of Seed Banks in Assisted Migration and Enrichment Planting
5. Source of Genetic Materials for Characterizing Ecological and Climate Change Adaptive Capacity
6. Selection of Genetically Appropriate Material for Restoration, Reintroduction or Enrichment Planting
7. Role of Community Seed Banks
8. Challenges
8.1. Inadequate Knowledge on Native Species Ecology, Phenology and Seed Biology
8.2. Poor Seed Viability
8.3. Collection Gaps and Incomplete Documentation
8.4. Inadequate Knowledge on Potential Genetic Value of Seed Bank Collections
8.5. Altered Genetic Make-Up of Seed Bank Collections
8.6. Reluctance to Exchange Germplasm
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- CBD. Stategic Plan for Biodiversity 2011–2020 and the Aichi Targets; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2010. [Google Scholar]
- CBD. COP 15: Nations Adopt Four Goals, 23 Targets for 2030 in Landmark UN Biodiversity Agreement. Available online: https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022 (accessed on 1 June 2023).
- Sacande, M.; Berrahmouni, N. Community participation and ecological criteria for selecting species and restoring natural capital with native species in the Sahel. Restor. Ecol. 2016, 24, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, L.; Driver, M.; Guja, L.; North, T.; Vanzella, B.; Fifield, G.; Bruce, S.; Taylor, D.; Bush, D. Seeding the future–the issues of supply and demand in restoration in Australia. Ecol. Manag. Restor. 2015, 16, 29–32. [Google Scholar] [CrossRef]
- Nevill, P.G.; Cross, A.T.; Dixon, K.W. Ethical seed sourcing is a key issue in meeting global restoration targets. Curr. Biol. 2018, 28, R1378–R1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borders, B.D.; Cypher, B.L.; Ritter, N.P.; Kelly, P.A. The Challenge of Locating Seed Sources for Restoration in the San Joaquin Valley, California. Nat. Areas J. 2011, 31, 110, 190–199. [Google Scholar] [CrossRef]
- Nevill, P.G.; Tomlinson, S.; Elliott, C.P.; Espeland, E.K.; Dixon, K.W.; Merritt, D.J. Seed production areas for the global restoration challenge. Ecol. Evol. 2016, 6, 7490–7497. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.E. Species diversity in restoration plantings: Important factors for increasing the diversity of threatened tree species in the restoration of the Araucaria forest ecosystem. Plant Divers. 2019, 41, 84–93. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Ma, X. The impact of large-scale afforestation on ecological environment in the Gobi region. Sci. Rep. 2021, 11, 14383. [Google Scholar] [CrossRef]
- Jalonen, R.; Valette, M.; Boshier, D.; Duminil, J.; Thomas, E. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conserv. Lett. 2018, 11, e12424. [Google Scholar] [CrossRef]
- SER. The SER International Primer on Ecological Restoration; Society for Ecological Restoration International: Tucson, AZ, USA, 2004; Available online: www.ser.org (accessed on 21 May 2023).
- Godefroid, S.; Van de Vyver, A.; Vanderborght, T. Germination capacity and viability of threatened species collections in seed banks. Biodivers. Conserv. 2010, 19, 1365–1383. [Google Scholar] [CrossRef]
- FAO. Second Report on the World’s Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2010; p. 299. [Google Scholar]
- Hay, F.R.; Probert, R.J. Advances in seed conservation of wild plant species: A review of recent research. Conserv. Physiol. 2013, 1, cot030. [Google Scholar] [CrossRef] [PubMed]
- Chapman, T.; Miles, S.; Trivedi, C. Capturing, protecting and restoring plant diversity in the UK: RBG Kew and the Millennium Seed Bank. Plant Divers. 2019, 41, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Merritt, D.J.; Dixon, K.W. Restoration Seed Banks—A Matter of Scale. Science 2011, 332, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Abeli, T.; Dalrymple, S.; Godefroid, S.; Mondoni, A.; Müller, J.V.; Rossi, G.; Orsenigo, S. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 2020, 34, 303–313. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Sharrock, S. The contribution of botanic gardens to ex situ conservation through seed banking. Plant Divers. 2017, 39, 373–378. [Google Scholar] [CrossRef]
- León-Lobos, P.; Way, M.; Aranda, P.D.; Lima-Junior, M. The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecol. Divers. 2012, 5, 245–258. [Google Scholar] [CrossRef]
- Volis, S. Conservation-oriented restoration–how to make it a success? Isr. J. Plant Sci. 2016, 63, 276–296. [Google Scholar] [CrossRef]
- Cornelius, J.P.; Miccolis, A. Can market-based agroforestry germplasm supply systems meet the needs of forest landscape restoration? New For. 2018, 49, 457–469. [Google Scholar] [CrossRef]
- Wyse, S.V.; Dickie, J.B. Predicting the global incidence of seed desiccation sensitivity. J. Ecol. 2017, 105, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- SER; INSR; RBGK. Seed Information Database (SID). 2023. Available online: https://ser-sid.org/ (accessed on 20 February 2023).
- Griffith, M.P.; Calonje, M.; Meerow, A.W.; Tut, F.; Kramer, A.; Hird, A.; Magellan, T.M.; Husby, C.E. Can a Botanic Garden Cycad Collection Capture the Genetic Diversity in a Wild Population? Int. J. Plant Sci. 2015, 176, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, S.E.; Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 2019, 5, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E.W.; Borer, E.T.; Reich, P.B. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 2015, 348, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basey, A.; Fant, A.C.J.B.A.T.; Kramer, A.C.J.B.A.T. Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ. Plants J. 2015, 16, 37–52. [Google Scholar] [CrossRef]
- Espeland, E.K.; Emery, N.C.; Mercer, K.L.; Woolbright, S.A.; Kettenring, K.M.; Gepts, P.; Etterson, J.R. Evolution of plant materials for ecological restoration: Insights from the applied and basic literature. J. Appl. Ecol. 2017, 54, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Ennos, R.A.; Worrell, R.; Malcolm, D.C. The genetic management of native species in Scotland. Int. J. For. Res. 1998, 71, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Prober, S.; Byrne, M.; McLean, E.; Steane, D.; Potts, B.; Vaillancourt, R.; Stock, W. Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 2015, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Rodríguez-Sánchez, F.; Orsini, L.; de Boer, E.; Jansson, R.; Morlon, H.; Fordham, D.A.; Jackson, S.T. Cracking the Code of Biodiversity Responses to Past Climate Change. Trends Ecol. Evol. 2018, 33, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2011, 4, 326–337. [Google Scholar] [CrossRef]
- Breed, M.F.; Stead, M.G.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv. Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Broadhurst, L.M.; Lowe, A.; Coates, D.J.; Cunningham, S.A.; McDonald, M.; Vesk, P.A.; Yates, C. Seed supply for broadscale restoration: Maximizing evolutionary potential. Evol. Appl. 2008, 1, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Bucharova, A.; Bossdorf, O.; Hölzel, N.; Kollmann, J.; Prasse, R.; Durka, W. Mix and match: Regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 2019, 20, 7–17. [Google Scholar] [CrossRef]
- Havens, K.; Vitt, P.; Still, S.; Kramer, A.T.; Fant, J.B.; Schatz, K. Seed Sourcing for Restoration in an Era of Climate Change. Nat. Areas J. 2015, 35, 122–133. [Google Scholar] [CrossRef]
- Franks, S.J.; Avise, J.C.; Bradshaw, W.E.; Conner, J.K.; Etterson, J.R.; Mazer, S.J.; Shaw, R.G.; Weis, A.E. The Resurrection Initiative: Storing Ancestral Genotypes to Capture Evolution in Action. Bioscience 2008, 58, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, A.M.; Cooper, M.D.; Korves, T.M.; Schmitt, J. Lagging adaptation to warming climate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2014, 111, 7906–7913. [Google Scholar] [CrossRef] [PubMed]
- Hamasha, H.R.; Hensen, I. Seed germination of four Jordanian stipa spp: Differences in temperature regimes and seed provenances. Plant Species Biol. 2009, 24, 127–132. [Google Scholar] [CrossRef]
- Mondoni, A.; Probert, R.J.; Rossi, G.; Vegini, E.; Hay, F.R. Seeds of alpine plants are short lived: Implications for long-term conservation. Ann. Bot. 2011, 107, 171–179. [Google Scholar] [CrossRef]
- Probert, R.J.; Daws, M.I.; Hay, F.R. Ecological correlates of ex situ seed longevity: A comparative study on 195 species. Ann. Bot. 2009, 104, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Garza, C.; Bongers, F.; Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 2013, 303, 35–45. [Google Scholar] [CrossRef]
- Lohbeck, M.; Winowiecki, L.; Aynekulu, E.; Okia, C.; Vågen, T.-G. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J. Appl. Ecol. 2018, 55, 59–68. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Lamarque, P.; Colace, M.-P.; Garden, D.; Girel, J.; Pellet, G.; Douzet, R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 2011, 99, 135–147. [Google Scholar] [CrossRef]
- Kramer, A.T.; Crane, B.; Downing, J.; Hamrick, J.L.; Havens, K.; Highland, A.; Jacobi, S.K.; Kaye, T.N.; Lonsdorf, E.V.; Ramp Neale, J.; et al. Sourcing native plants to support ecosystem function in different planting contexts. Restor. Ecol. 2019, 27, 470–476. [Google Scholar] [CrossRef]
- Pavlik, B. Building Kew’s Programme in Restoration Ecology. Samara 2011, 20, 1–2. [Google Scholar]
- Maschinski, J.; Albrecht, M.A. Center for Plant Conservation’s Best Practice Guidelines for the reintroduction of rare plants. Plant Divers. 2017, 39, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, K.J.; Hay, F.R.; Lusty, C. Why Seed Physiology Is Important for Genebanking. Plants 2020, 9, 584. [Google Scholar] [CrossRef]
- Ellis, R.H. Temporal patterns of seed quality development, decline, and timing of maximum quality during seed development and maturation. Seed Sci. Res. 2019, 29, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Nickson, T.E.; Challender, M. Germplasm exchange is critical to conservation of biodiversity and global food security. Agron. J. 2021, 113, 2969–2979. [Google Scholar] [CrossRef]
- Zinnen, J.; Broadhurst, L.M.; Gibson-Roy, P.; Jones, T.A.; Matthews, J.W. Seed production areas are crucial to conservation outcomes: Benefits and risks of an emerging restoration tool. Biodivers. Conserv. 2021, 30, 1233–1256. [Google Scholar] [CrossRef]
- Haidet, M.; Olwell, P. Seeds of Success: A National Seed Banking Program Working to Achieve Long-Term Conservation Goals. Nat. Areas J. 2015, 35, 165–173. [Google Scholar] [CrossRef]
- Berrahmouni, N.; Laestadius, L.; Martucci, A.; Mollicone, D.; Patriarca, C.; Sacande, M. Building Africa’s Great Green Wall: Restoring Degraded Drylands for Stronger and More Resilient Communities; FAO: Rome, Italy, 2016. [Google Scholar]
- Dell’Aquila, A. Development of novel techniques in conditioning, testing and sorting seed physiological quality. Seed Sci. Technol. 2009, 37, 608–624. [Google Scholar] [CrossRef]
- Frischie, S.; Miller, A.L.; Pedrini, S.; Kildisheva, O.A. Ensuring seed quality in ecological restoration: Native seed cleaning and testing. Restor. Ecol. 2020, 28, S239–S248. [Google Scholar] [CrossRef]
- Schmidt, I.B.; de Urzedo, D.I.; Piña-Rodrigues, F.C.M.; Vieira, D.L.M.; de Rezende, G.M.; Sampaio, A.B.; Junqueira, R.G.P. Community-based native seed production for restoration in Brazil–the role of science and policy. Plant Biol. 2018, 21, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, J.F. Seed Storage and Longevity. In Seed Biology; Kozlowski, T.T., Ed.; Illus: New York, NY, USA; London, UK, 1972; Volume 3, pp. 145–245. [Google Scholar]
- Broadhurst, L.M.; Jones, T.A.; Smith, F.S.; North, T.; Guja, L. Maximizing Seed Resources for Restoration in an Uncertain Future. Bioscience 2015, 66, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Nagel, M.; Börner, A. The longevity of crop seeds stored under ambient conditions. Seed Sci. Res. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Gibson-Roy, P. Restoring grassy ecosystems–Feasible or fiction? An inquisitive Australian’s experience in the USA. Ecol. Manag. Restor. 2018, 19, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Roshetko, J.M.; Dawson, I.K.; Urquiola, J.; Lasco, R.D.; Leimona, B.; Weber, J.C.; Bozzano, M.; Lillesø, J.-P.B.; Graudal, L.; Jamnadass, R. To what extent are genetic resources considered in environmental service provision? A case study based on trees and carbon sequestration. Clim. Dev. 2018, 10, 755–768. [Google Scholar] [CrossRef]
- Marin, M.; Toorop, P.; Powell, A.A.; Laverack, G. Tetrazolium staining predicts germination of commercial seed lots of European native species differing in seed quality. Seed Sci. Technol. 2017, 45, 151–166. [Google Scholar] [CrossRef]
- de Urzedo, D.I.; Fisher, R.; Piña-Rodrigues, F.C.M.; Freire, J.M.; Junqueira, R.G.P. How policies constrain native seed supply for restoration in Brazil. Restor. Ecol. 2019, 27, 768–774. [Google Scholar] [CrossRef]
- Muir, J.P.; Pitman, W.D.; Smith, F.S.; Lloyd-Reilley, J.; Shadow, R.A. Challenges to developing native legume seed supplies: The Texas experience as a case study. Nativ. Plants J. 2018, 19, 224–238. [Google Scholar] [CrossRef]
- Tischew, S.; Youtie, B.; Kirmer, A.; Shaw, N. Farming for Restoration: Building Bridges for Native Seeds. Ecol. Restor. 2011, 29, 219–222. [Google Scholar] [CrossRef]
- Abbandonato, H.; Pedrini, S.; Pritchard, H.W.; De Vitis, M.; Bonomi, C. Native seed trade of herbaceous species for restoration: A European policy perspective with global implications. Restor. Ecol. 2018, 26, 820–826. [Google Scholar] [CrossRef] [Green Version]
- FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Pedrini, S.; Dixon, K.W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 2020, 28, S286–S303. [Google Scholar] [CrossRef]
- Liu, U.; Breman, E.; Cossu, T.A.; Kenney, S. The conservation value of germplasm stored at the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK. Biodivers. Conserv. 2018, 27, 1347–1386. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.L.; Cuervo, M.; Kreuze, J.F.; Muller, G.; Kulkarni, G.; Kumari, S.G.; Massart, S.; Mezzalama, M.; Alakonya, A.; Muchugi, A.; et al. Phytosanitary Interventions for Safe Global Germplasm Exchange and the Prevention of Transboundary Pest Spread: The Role of CGIAR Germplasm Health Units. Plants 2021, 10, 328. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Grytnes, J.-A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Fei, S.; Desprez, J.M.; Potter, K.M.; Jo, I.; Knott, J.A.; Oswalt, C.M. Divergence of species responses to climate change. Sci. Adv. 2017, 3, e1603055. [Google Scholar] [CrossRef] [Green Version]
- Benomar, L.; Lamhamedi, M.S.; Rainville, A.; Beaulieu, J.; Bousquet, J.; Margolis, H.A. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient. Front. Plant Sci. 2016, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.B.; Lobell, D.B.; Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environ. Chang. 2009, 19, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Etterson, J.R.; Franks, S.J.; Mazer, S.J.; Shaw, R.G.; Gorden, N.L.; Schneider, H.E.; Weber, J.J.; Winkler, K.J.; Weis, A.E. Project Baseline: An unprecedented resource to study plant evolution across space and time. Am. J. Bot. 2016, 103, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Thomann, M.; Imbert, E.; Engstrand, R.C.; Cheptou, P.O. Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. J. Evol. Biol. 2015, 28, 766–778. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Wilhite, B.; Neale, D.B. Environmental Genome-Wide Association Reveals Climate Adaptation Is Shaped by Subtle to Moderate Allele Frequency Shifts in Loblolly Pine. Genome Biol. Evol. 2019, 11, 2976–2989. [Google Scholar] [CrossRef] [PubMed]
- Nevo, E. Evolution of Wild Barley and Barley Improvement. In Advance in Barley Sciences: Proceedings of 11th International Barley Genetics Symposium; Zhang, G., Li, C., Liu, X., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands; Hangzhou, China; New York, NY, USA, 2012; Volume 1, pp. 1–23. [Google Scholar]
- Kuester, A.; Wilson, A.; Chang, S.M.; Baucom, R.S. A resurrection experiment finds evidence of both reduced genetic diversity and potential adaptive evolution in the agricultural weed Ipomoea purpurea. Mol. Ecol. 2016, 25, 4508–4520. [Google Scholar] [CrossRef] [PubMed]
- Frachon, L.; Libourel, C.; Villoutreix, R.; Carrère, S.; Glorieux, C.; Huard-Chauveau, C.; Navascués, M.; Gay, L.; Vitalis, R.; Baron, E.; et al. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat. Ecol. Evol. 2017, 1, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.S.; Garrett, A.D.; Huber, K.E.; Hargarten, H.; Pespeni, M.H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190943. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, Y.; Ali, A.; Ndjeunga, J.; Luong, V.; Thuillet, A.-C.; Saïdou, A.-A.; Bezançon, G.; Mariac, C.; De Mita, S.; Pham, J.-L.; et al. Selection for earlier flowering crop associated with climatic variations in the Sahel. PLoS ONE 2011, 6, e19563. [Google Scholar] [CrossRef] [Green Version]
- Shapter, F.M.; Fitzgerald, T.L.; Waters, D.L.E.; McDonald, S.; Chivers, I.H.; Nevo, E.; Henry, R. Analysis of adaptive ribosomal gene diversity in wild plant populations from contrasting climatic environments. Plant Signal. Behav. 2012, 7, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, T.L.; Shapter, F.M.; McDonald, S.; Waters, D.L.; Chivers, I.H.; Drenth, A.; Nevo, E.; Henry, R.J. Genome diversity in wild grasses under environmental stress. Proc. Natl. Acad. Sci. USA 2011, 108, 21140–21145. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Henry, R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol. Ecol. 2022, 31, 2207–2222. [Google Scholar] [CrossRef]
- Flanagan, S.P.; Forester, B.R.; Latch, E.K.; Aitken, S.N.; Hoban, S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl. 2018, 11, 1035–1052. [Google Scholar] [CrossRef]
- Leger, E.A.; Baughman, O.W. What Seeds to Plant in the Great Basin? Comparing Traits Prioritized in Native Plant Cultivars and Releases with those that Promote Survival in the Field. Nat. Areas J. 2015, 35, 54–68. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Ndjiondjop, M.-N.; Henry, R.J. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief. Funct. Genom. 2018, 17, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Bari, A.; Street, K.; Mackay, M.; Endresen, D.T.F.; De Pauw, E.; Amri, A. Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet. Resour. Crop Evol. 2012, 59, 1465–1481. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Street, K.; Mackay, M.; Yahiaoui, N.; Keller, B.; Bennetzen, J.L. Unlocking Wheat Genetic Resources for the Molecular Identification of Previously Undescribed Functional Alleles at the ‘Pm3’ Resistance Locus. Proc. Natl. Acad. Sci. USA 2009, 106, 9519–9524. [Google Scholar] [CrossRef]
- Endresen, D.T.F.; Street, K.; Mackay, M.; Bari, A.; Amri, A.; de Pauw, E.; Nazari, K.; Yahyaoui, A. Sources of resistance to stem rust (Ug99) in bread wheat and durum wheat identified using focused identification of germplasm strategy. Crop Sci. 2012, 52, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, J.A.; Ortiz, R. Focused Identification of Germplasm Strategy (FIGS): Polishing a rough diamond. Curr. Opin. Insect Sci. 2021, 45, 1–6. [Google Scholar] [CrossRef]
- Cortés, A.J.; Blair, M.W. Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. Front. Plant Sci. 2018, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Lasky, J.R.; Upadhyaya, H.D.; Ramu, P.; Deshpande, S.; Hash, C.T.; Bonnette, J.; Juenger, T.E.; Hyma, K.; Acharya, C.; Mitchell, S.E.; et al. Genome-environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 2015, 1, e1400218. [Google Scholar] [CrossRef] [Green Version]
- Breed, M.F.; Harrison, P.A.; Blyth, C.; Byrne, M.; Gaget, V.; Gellie, N.J.C.; Groom, S.V.C.; Hodgson, R.; Mills, J.G.; Prowse, T.A.A.; et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 2019, 20, 615–628. [Google Scholar] [CrossRef]
- Miller, B.P.; Sinclair, E.A.; Menz, M.H.M.; Elliott, C.P.; Bunn, E.; Commander, L.E.; Dalziell, E.; David, E.; Davis, B.; Erickson, T.E.; et al. A framework for the practical science necessary to restore sustainable, resilient, and biodiverse ecosystems. Restor. Ecol. 2017, 25, 605–617. [Google Scholar] [CrossRef]
- Elzenga, J.T.M.; Bekker, R.M.; Pritchard, H.W. Maximising the use of native seeds in restoration projects. Plant Biol. 2019, 21, 377–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyle, G.L.; Steadman, K.J.; Daws, M.I.; Adkins, S.W. Pre- and Post-harvest Influences on Seed Dormancy Status of an Australian Goodeniaceae species, Goodenia fascicularis. Ann. Bot. 2008, 102, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wambugu, P.W.; Nyamongo, D.O. Seed Dormancy and Germination Testing Protocol for Various Economically Useful Plant Species in the Amaranthaceae Family. J. New Seeds 2010, 11, 412. [Google Scholar] [CrossRef]
- Ryan, N.; Laverack, G.; Powell, A. Establishing quality control in UK wildflower seed production. Seed Test. Inten. 2008, 135, 49–53. [Google Scholar]
- Erickson, T.E.; Shackelford, N.; Dixon, K.W.; Turner, S.R.; Merritt, D.J. Overcoming physiological dormancy in seeds of Triodia (Poaceae) to improve restoration in the arid zone. Restor. Ecol. 2016, 24, S64–S76. [Google Scholar] [CrossRef] [Green Version]
- Commander, L.E.; Merritt, D.J.; Rokich, D.P.; Dixon, K.W. Seed biology of Australian arid zone species: Germination of 18 species used for rehabilitation. J. Arid Environ. 2009, 73, 617–625. [Google Scholar] [CrossRef]
- Godefroid, S.; Van de Vyver, A.; Stoffelen, P.; Robbrecht, E.; Vanderborght, T. Testing the viability of seeds from old herbarium specimens for conservation purposes. Taxon 2011, 60, 565–569. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, M. Meta-analysis of genetic representativeness of plant populations under ex situ conservation in contrast to wild source populations. Conserv. Biol. 2020, 35, 12–23. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Norton, S.L. Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm. Plants 2020, 9, 817. [Google Scholar] [CrossRef]
- Jarquin, D.; Specht, J.; Lorenz, A. Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions. G3 Genes Genomes Genet. 2016, 6, 2329–2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.V.; Nevill, P.G.; Krauss, S.L. Next generation restoration genetics: Applications and opportunities. Trends Plant Sci. 2014, 19, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; Durka, W.; Bossdorf, O.; Bucharova, A. Rapid evolution in native plants cultivated for ecological restoration: Not a general pattern. Plant Biol. 2019, 21, 551–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, J.C.; Huber, C.D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2015096118. [Google Scholar] [CrossRef] [PubMed]
- Bioversity International. Collecting Plant Genetic Diversity: Technical Guidelines; 2011 Update; Guarino, L., Ramanatha Rao, V., Goldberg, E., Eds.; Bioversity International: Rome, Italy, 2011. [Google Scholar]
- ENSCONET. ENSCONET Seed Collecting Manual for Wild Species; European Native Seed Conservation Network: Maastricht, The Netherlands, 2009. [Google Scholar]
- O’Grady, J.J.; Brook, B.W.; Reed, D.H.; Ballou, J.D.; Tonkyn, D.W.; Frankham, R. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 2006, 133, 42–51. [Google Scholar] [CrossRef]
- Angeloni, F.; Ouborg, N.J.; Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 2011, 144, 35–43. [Google Scholar] [CrossRef]
- Nevo, E.; Fu, Y.-B.; Pavlicek, T.; Khalifa, S.; Tavasi, M.; Beiles, A. Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. USA 2012, 109, 3412–3415. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Muthamia, Z. Incentives and disincentives for Kenya’s participation in the multilateral system of access and benefit sharing. In The Multilateral System of Access and Benefit Sharing: Case Studies on Implementation in Kenya, Morocco, Philippines and Peru; Noriega, I.L., Halewood, M., Lapeña, I., Eds.; Bioversity International: Rome, Italy, 2012; pp. 9–41. [Google Scholar]
- López Noriega, I.; Halewood, M.; Galluzzi, G.; Vernooy, R.; Bertacchini, E.; Gauchan, D.; Welch, E. How Policies Affect the Use of Plant Genetic Resources: The Experience of the CGIAR. Resources 2013, 2, 231–269. [Google Scholar] [CrossRef] [Green Version]
Element | Description |
---|---|
Conducive policy and regulatory framework * | Phytosanitary regulations and germplasm exchange policies. |
Technical capabilities * | Human resource capacity, both technical and managerial, and the operational procedures for seed production and seed handling. |
Physical capacity * | Sufficiency of the available infrastructural capacity for seed production, handling and storage. This includes seed bulking fields, irrigation and seed handling equipment. |
Reliable quality assurance mechanism * | Existing seed quality control and assurance processes, including seed certification schemes. |
Access to sufficient resources and reliable financing mechanisms | Capacity to access working capital to fund operational and capital costs necessary for restoration seed supply. |
Sufficient demand | Existence of stable and predictable demand for restoration seed and buyers’ willingness to pay for the seed. |
Seed availability | Determines the capacity of seed banks to assemble collections of wild plants. Seed availability varies widely among species, populations, seasons and in response to various environmental and anthropogenic factors. |
Seed Supply Aspect | Seed Bank Capacity | Challenge |
---|---|---|
Availability of genetically appropriate germplasm | Genetically diverse, geo-referenced, multi-provenance germplasm collections available. | Collection gaps and incomplete documentation exist; risk of genetic material having altered genetic make-up during seed bank operations and subsequent grow out events. |
Selection of adapted restoration material | Possesses capacity to match germplasm source and planting site due to availability of various types of data and information. | Potential restoration value of some native species and ecotypes held in seed banks is unknown; incomplete documentation. |
Seed sourcing | In some cases, it might be relatively easy to find information on species phenology, distribution patterns and optimum collecting time of native species due to established networks. | Seed shattering nature and poor understanding of the phenology of some native species leads to challenges in accurate timing of seed maturity. |
Seed processing | Various types of seed processing equipment exist. | Seed processing of native species is more complex and challenging due to large morphological diversity of seed and seed-bearing structures. |
Seed drying | Low temperature ultra-drying facilities exist. | Space in drying facilities is usually limited, although this can be overcome through ambient drying, as happens in some seed banks. |
Storage | Both temperature-controlled and non-controlled storage facilities are available in some seed banks. | Inadequate knowledge on seed storage behavior of some native species, although models are increasingly being developed to predict seed longevity [23,24]. |
Seed quality assurance and control | Experience in routine seed viability testing of diverse species. | Seed viability testing and dormancy-breaking treatment protocols are lacking for some native species; low seed viability due to long storage periods, poor seed handling or poor storability. |
Facilitating germplasm exchange | Wide experience in facilitating germplasm exchange including meeting relevant regulatory requirements. | Reluctance to share germplasm by some national seed banks; Proliferation of germplasm protectionist policies and tendencies nationally; strict phytosanitary regulations that hinder germplasm exchange. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wambugu, P.W.; Nyamongo, D.O.; Kirwa, E.C. Role of Seed Banks in Supporting Ecosystem and Biodiversity Conservation and Restoration. Diversity 2023, 15, 896. https://doi.org/10.3390/d15080896
Wambugu PW, Nyamongo DO, Kirwa EC. Role of Seed Banks in Supporting Ecosystem and Biodiversity Conservation and Restoration. Diversity. 2023; 15(8):896. https://doi.org/10.3390/d15080896
Chicago/Turabian StyleWambugu, Peterson W., Desterio O. Nyamongo, and Everlyne C. Kirwa. 2023. "Role of Seed Banks in Supporting Ecosystem and Biodiversity Conservation and Restoration" Diversity 15, no. 8: 896. https://doi.org/10.3390/d15080896
APA StyleWambugu, P. W., Nyamongo, D. O., & Kirwa, E. C. (2023). Role of Seed Banks in Supporting Ecosystem and Biodiversity Conservation and Restoration. Diversity, 15(8), 896. https://doi.org/10.3390/d15080896