The Case for a Nuclear Barcode: Using the CAD CPS Region for Species and Genus Level Discrimination in Beetles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon and Gene Selection
2.2. Gene Statistics
2.3. Tests of Specimen Placement
3. Results
3.1. Comparison of COI and CAD Gene Characteristics
COI Barcode | Length | # PIS | % PIS | Conspecifics Properly Placed in NJ | Outgroups Properly Placed in NJ | Primers |
---|---|---|---|---|---|---|
Bembidion (Carabidae) | 658 | 146 | 22.19 | 4/6 | 3/4 | LCO1490, HCO2198 [51] |
Monochamus (Cerambycidae) | 659 | 120 | 18.21 | 46/62 | 3/4 | LCO1490, HCO2198 [51] |
Scolytus (Scolytinae) | 612 | 248 | 40.52 | 31/39 | 4/4 | 1495b, rev750, F215, Rev453 [35] |
Cyclorhipidion (Scolytinae: Xyleborini) | 656 | 240 | 36.59 | 27/27 | 3/4 | LCO1490, HCO2198 [51]; 1495b, rev750 [35] |
Xyleborus (Scolytinae: Xyleborini) | 649 | 175 | 26.96 | 22/22 | 3/4 | LCO1490, HCO2198 [51]; 1495b, rev750 [35] |
CAD Barcode | ||||||
Bembidion (Carabidae) | 854 | 174 | 20.37 | 8/8 | 2/4 | many [31,37] |
Monochamus (Cerambycidae) | 943 | 94 | 9.97 | 60/66 | 3/4 | CD338, CD668, CD688 [33] |
Scolytus (Scolytinae) | 471 | 157 | 33.33 | 48/50 | 4/4 | CADforB2, CADfor4, CADrev1mod [52] |
Cyclorhipidion (Scolytinae: Xyleborini) | 594 | 70 | 11.78 | 11/11 | 2/4 | CADforB2, CADfor4, CADrev1mod [52] |
Xyleborus (Scolytinae: Xyleborini) | 594 | 15 | 2.53 | 17/17 | 4/4 | CADforB2, CADfor4, CADrev1mod [52] |
3.2. Taxon Placement and Diagnostic Potential
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.E.; Hausmann, A.; Hallwachs, W.; Janzen, D.H. Advancing Taxonomy and Bioinventories with DNA Barcodes. Philos. Trans. R. Soc. B Biol. Sci. 2016, 20150339. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, P.F.; Sigsgaard, E.E. Environmental DNA Metabarcoding of Wild Flowers Reveals Diverse Communities of Terrestrial Arthropods. Ecol. Evol. 2019, 9, 1665–1679. [Google Scholar] [CrossRef] [Green Version]
- Caesar, R.M.; Sörensson, M.; Cognato, A.I. Integrating DNA Data and Traditional Taxonomy to Streamline Biodiversity Assessment: An Example from Edaphic Beetles in the Klamath Ecoregion, California, USA. Divers. Distrib. 2006, 12, 483–489. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes Fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef]
- Dukes, C.D.; Janssens, F.; Recuero, E.; Caterino, M.S. Specific and Intraspecific Diversity of Symphypleona and Neelipleona (Hexapoda: Collembola) in Southern High Appalachia (USA). Diversity 2022, 14, 847. [Google Scholar] [CrossRef]
- Prendini, L. Comment on “Identifying Spiders through DNA Barcodes”. Can. J. Zool. 2005, 83, 498–504. [Google Scholar] [CrossRef]
- Vences, M.; Thomas, M.; Van Der Meijden, A.; Chiari, Y.; Vieites, D.R. Comparative Performance of the 16S RRNA Gene in DNA Barcoding of Amphibians. Front. Zool. 2005, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Siddappa, C.M.; Saini, M.; Das, A.; Doreswamy, R.; Sharma, A.K.; Gupta, P.K. Sequence Characterization of Mitochondrial 12S RRNA Gene in Mouse Deer (Moschiola indica) for PCR-RFLP Based Species Identification. Mol. Biol. Int. 2013, 2013, 783925. [Google Scholar] [CrossRef] [Green Version]
- Yacoub, H.A.; Fathi, M.M.; Sadek, M.A. Using Cytochrome b Gene of MtDNA as a DNA Barcoding Marker in Chicken Strains. Mitochondrial DNA 2015, 26, 217–223. [Google Scholar] [CrossRef]
- Foster, B.T.; Cognato, A.I.; Gold, R.E. DNA-Based Identification of the Eastern Subterranean Termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2004, 97, 95–101. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological Identifications through DNA Barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- DeSalle, R.; Goldstein, P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 2019, 7, 302. [Google Scholar] [CrossRef] [Green Version]
- Doorenweerd, C.; San Jose, M.; Leblanc, L.; Rubinoff, D. Inadequate Molecular Identification Protocols for Invasive Pests Threaten Biosecurity. Syst. Entomol. 2022, 48, 355–360. [Google Scholar] [CrossRef]
- Chase, M.W.; Fay, M.F. Barcoding of Plants and Fungi. Science 2009, 325, 682–683. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpa, F.A.; Lieutier, F.; Roux-Morabito, G. Incorporation of Mitochondrial Fragments in the Nuclear Genome (Numts) of the Longhorned Beetle Monochamus galloprovincialis (Coleoptera, Cerambycidae). J. Zool. Syst. Evol. Res. 2009, 47, 141–148. [Google Scholar] [CrossRef]
- Jordal, B.H.; Kambestad, M. DNA Barcoding of Bark and Ambrosia Beetles Reveals Excessive NUMTs and Consistent East-West Divergence across Palearctic Forests. Mol. Ecol. Resour. 2014, 14, 7–17. [Google Scholar] [CrossRef]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many Species in One: DNA Barcoding Overestimates the Number of Species When Nuclear Mitochondrial Pseudogenes Are Coamplified. Proc. Natl. Acad. Sci. USA 2008, 105, 13486–13491. [Google Scholar] [CrossRef]
- Cognato, A.I.; Caesar, R.M.; Blaxter, M.; Vogler, A.P. Will DNA Barcoding Advance Efforts to Conserve Biodiversity More Efficiently than Traditional Taxonomic Methods? Front. Ecol. Environ. 2006, 4, 268–273. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef] [Green Version]
- Cognato, A.I.; Sari, G.; Smith, S.M.; Beaver, R.A.; Li, Y.; Hulcr, J.; Jordal, B.H.; Kajimura, H.; Lin, C.S.; Pham, T.H.; et al. The Essential Role of Taxonomic Expertise in the Creation of DNA Databases for the Identification and Delimitation of Southeast Asian Ambrosia Beetle Species (Curculionidae: Scolytinae: Xyleborini). Front. Ecol. Evol. 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Sonnenberg, R.; Nolte, A.; Tautz, D. An Evaluation of LSU RDNA D1-D2 Sequences for Their Use in Species Identification. Front. Zool. 2007, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.J.; Gaut, B.S. Evolution of Genes and Taxa: A Primer. Plant Mol. Biol. 2000, 42, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cognato, A.I.; Vogler, A.P. Exploring Data Interaction and Nucleotide Alignment in a Multiple Gene Analysis of Ips (Coleoptera: Scolytinae). Syst. Biol. 2001, 50, 758–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratzel, F.; Heller, S.; Cyrannek, N.; Paule, J.; Leme, E.M.C.; Loreth, A.; Nowotny, A.; Kiefer, M.; Till, W.; Barfuss, M.H.J.; et al. The Low-Copy Nuclear Gene Agt1 as a Novel DNA Barcoding Marker for Bromeliaceae. BMC Plant Biol. 2020, 20, 111. [Google Scholar] [CrossRef] [Green Version]
- Pillon, Y.; Johansen, J.B.; Sakishima, T.; Roalson, E.H.; Price, D.K.; Stacy, E.A. Gene Discordance in Phylogenomics of Recent Plant Radiations, an Example from Hawaiian Cyrtandra (Gesneriaceae). Mol. Phylogenet. Evol. 2013, 69, 293–298. [Google Scholar] [CrossRef]
- Caterino, M.S.; Cho, S.; Sperling, F.A. The Current State of Insect Molecular Systematics: A Thriving Tower of Babel. Annu. Rev. Entomol. 2000, 45, 1–54. [Google Scholar] [CrossRef]
- Cognato, A.I.; Taft, W.; Osborn, R.K.; Rubinoff, D. Multi-Gene Phylogeny of North American Clear-Winged Moths (Lepidoptera: Sesiidae): A Foundation for Future Evolutionary Study of a Speciose Mimicry Complex. Cladistics 2023, 39, 1–17. [Google Scholar] [CrossRef]
- Dowton, M.; Meiklejohn, K.; Cameron, S.L.; Wallman, J. A Preliminary Framework for DNA Barcoding, Incorporating the Multispecies Coalescent. Syst. Biol. 2014, 63, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Foster, P.G.; Bergo, E.S.; Bourke, B.P.; Oliveira, T.M.P.; Nagaki, S.S.; Sant’Ana, D.C.; Sallum, M.A.M. Phylogenetic Analysis and DNA-Based Species Confirmation in Anopheles (Nyssorhynchus). PLoS ONE 2013, 8, e54063. [Google Scholar] [CrossRef] [Green Version]
- Che, L.; Zhang, S.; Li, Y.; Liang, D.; Pang, H.; Slipiński, A.; Zhang, P. Genome-Wide Survey of Nuclear Protein-Coding Markers for Beetle Phylogenetics and Their Application in Resolving Both Deep and Shallow-Level Divergences. Mol. Ecol. Resour. 2017, 17, 1342–1358. [Google Scholar] [CrossRef]
- Wild, A.L.; Maddison, D.R. Evaluating Nuclear Protein-Coding Genes for Phylogenetic Utility in Beetles. Mol. Phylogenet. Evol. 2008, 48, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, L.; Gorring, P.; Kruszelnicki, L.; Kasatkin, D.G.; Szczepański, W.T. A Fine Line between Species and Ecotype: A Case Study of Anoplistes halodendri and A. kozlovi (Coleoptera: Cerambycidae) Occurring Sympatrically in Mongolia. Arthropod Syst. Phylogeny 2021, 79, 1–23. [Google Scholar] [CrossRef]
- Gorring, P.S.; Farrell, B.D. Evaluating Species Boundaries Using Coalescent Delimitation in Pine-Killing Monochamus (Coleoptera: Cerambycidae) Sawyer Beetles. Mol. Phylogenet. Evol. 2023, 184, 107777. [Google Scholar] [CrossRef]
- Cognato, A.I.; Smith, S.M.; Jordal, B.H. Patterns of Host Tree Use within a Lineage of Saproxlic Snout-Less Weevils (Coleoptera: Curculionidae: Scolytinae: Scolytini). Mol. Phylogenet. Evol. 2021, 159, 107107. [Google Scholar] [CrossRef]
- Smith, S.M.; Cognato, A.I. A Taxonomic Monograph of Nearctic Scolytus Geoffroy (Coleoptera, Curculionidae, Scolytinae). Zookeys 2014, 450, 1–182. [Google Scholar] [CrossRef]
- Smith, S.M.; Cognato, A.I. New Non-Native Pseudocryptic Cyclorhipidion Species (Coleoptera: Curculionidae: Scolytinae: Xyleborini) Found in the United States as Revealed in a Multigene Phylogeny. Insect Syst. Divers. 2022, 6, 2. [Google Scholar] [CrossRef]
- Maddison, D.R. Phylogeny of Bembidion and Related Ground Beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina). Mol. Phylogenet. Evol. 2012, 63, 533–576. [Google Scholar] [CrossRef]
- Grzywacz, A.; Wyborska, D.; Piwczyński, M. DNA Barcoding Allows Identification of European Fanniidae (Diptera) of Forensic Interest. Forensic Sci. Int. 2017, 278, 106–114. [Google Scholar] [CrossRef]
- Will, K.W.; Rubinoff, D. Myth of the Molecule: DNA Barcodes for Species Cannot Replace Morphology for Identification and Classification. Cladistics 2004, 20, 47–55. [Google Scholar] [CrossRef]
- Gorring, P.S. Gene to Genus: Systematics and Population Dynamics in Lamiini Beetles (Coleoptera: Cerambycidae) with Focus on Monochamus Dejean. Ph.D. Dissertation, Harvard University, Cambridge, MA, USA, 2019. Available online: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029751 (accessed on 30 May 2023).
- Horn, S. Target Enrichment via DNA Hybridization Capture. Methods Mol. Biol. 2012, 840, 177–188. [Google Scholar] [CrossRef]
- Peñalba, J.V.; Smith, L.L.; Tonione, M.A.; Sass, C.; Hykin, S.M.; Skipwith, P.L.; Mcguire, J.A.; Bowie, R.C.K.; Moritz, C. Sequence Capture Using PCR-Generated Probes: A Cost-Effective Method of Targeted High-Throughput Sequencing for Nonmodel Organisms. Mol. Ecol. Resour. 2014, 14, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. 2018. Available online: http://www.mesquiteproject.org (accessed on 30 May 2023).
- Heibl, C. PHYLOCH: R Language Tree Plotting Tools and Interfaces to Diverse Phylogenetic Software Packages. 2013. Available online: http://www.christophheibl.de/Rpackages.html (accessed on 30 May 2023).
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4; Sinauer Associates: Sunderland, MA, USA, 2003; Available online: http://phylosolutions.com/paup-test (accessed on 30 May 2023).
- Srivathsan, A.; Meier, R. On the Inappropriate Use of Kimura-2-Parameter (K2P) Divergences in the DNA-Barcoding Literature. Cladistics 2012, 28, 190–194. [Google Scholar] [CrossRef]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble Species by Automatic Partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Modica, M.V.; Zhang, Y.; Sirovich, L.; Boisselier, M.C.; Cruaud, C.; Holford, M.; Samadi, S. Large-Scale Species Delimitation Method for Hyperdiverse Groups. Mol. Ecol. 2012, 21, 2671–2691. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Trepanowski, N.F.; Molongoski, J.J.; Reagel, P.F.; Lingafelter, S.W.; Nadel, H.; Myers, S.W.; Ray, A.M. Identification of Wood-Boring Beetles (Cerambycidae and Buprestidae) Intercepted in Trade Associated Solid Wood Packaging Material Using DNA Barcoding and Morphology. Sci. Rep. 2017, 7, 40316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutroumpa, F.A.; Rougon, D.; Bertheau, C.; Lieutier, F.; Roux-Morabito, G. Evolutionary Relationships within European Monochamus (Coleoptera: Cerambycidae) Highlight the Role of Altitude in Species Delineation. Biol. J. Linn. Soc. 2013, 109, 354–376. [Google Scholar] [CrossRef] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Jordal, B.H.; Sequeira, A.S.; Cognato, A.I. The Age and Phylogeny of Wood Boring Weevils and the Origin of Subsociality. Mol. Phylogenet. Evol. 2011, 59, 708–724. [Google Scholar] [CrossRef]
- Després, L. One, Two or More Species? Mitonuclear Discordance and Species Delimitation. Mol. Ecol. 2019, 28, 3845–3847. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, J.C.; Koubínová, D.; Szenteczki, M.A.; Pitteloud, C.; Dincă, V.; Alvarez, N.; Vila, R. A Mirage of Cryptic Species: Genomics Uncover Striking Mitonuclear Discordance in the Butterfly Thymelicus Sylvestris. Mol. Ecol. 2019, 28, 3857–3868. [Google Scholar] [CrossRef]
- Funk, D.J.; Omland, K. Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 397–423. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.M.A.; Levin, S.A. Leaky Prezygotic Isolation and Porous Genomes: Rapid Introgression of Maternally Inherited DNA. Evolution 2005, 59, 720–729. [Google Scholar] [PubMed]
- Linnen, C.R.; Farrell, B.D. Mitonuclear Discordance Is Caused by Rampant Mitochondrial Introgression in Neodiprion (Hymenoptera: Diprionidae) Sawflies. Evolution 2007, 61, 1417–1438. [Google Scholar] [CrossRef]
- Avise, J.C. Gene Trees and Organismal Histories: A Phylogenetic Approach to Population Biology. Evolution 1989, 43, 1192. [Google Scholar] [CrossRef]
- Bensasson, D.; Zhang, D.X.; Hartl, D.L.; Hewitt, G.M. Mitochondrial Pseudogenes: Evolution’s Misplaced Witnesses. Trends Ecol. Evol. 2001, 16, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Philippe, H.; Brinkmann, H.; Lavrov, D.V.; Littlewood, D.T.J.; Manuel, M.; Wörheide, G.; Baurain, D. Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough. PLoS Biol. 2011, 9, e1000602. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, D.A.; Mather, N.; Van Der Wal, C.; Ho, S.Y.W. Excluding Loci with Substitution Saturation Improves Inferences from Phylogenomic Data. Syst. Biol. 2022, 71, 676–689. [Google Scholar] [CrossRef]
- McKenna, D.D.; Wild, A.L.; Kanda, K.; Bellamy, C.L.; Beutel, R.G.; Caterino, M.S.; Farnum, C.W.; Hawks, D.C.; Ivie, M.A.; Jameson, M.L.; et al. The Beetle Tree of Life Reveals That Coleoptera Survived End-Permian Mass Extinction to Diversify during the Cretaceous Terrestrial Revolution. Syst. Entomol. 2015, 40, 835–880. [Google Scholar] [CrossRef] [Green Version]
- Meiklejohn, K.A.; Damaso, N.; Robertson, J.M. Assessment of BOLD and GenBank—Their Accuracy and Reliability for the Identification of Biological Materials. PLoS ONE 2019, 14, e0217084. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.; Turelli, M. Stochasticity Overrules the “Three-Times Rule”: Genetic Drift, Genetic Draft, and Coalescence Times for Nuclear Loci versus Mitochondrial DNA. Evolution 2003, 57, 182–190. [Google Scholar]
- Maddison, W.P. Gene Trees in Species Trees. Syst. Biol. 1997, 46, 523–536. [Google Scholar] [CrossRef]
- Moore, W.S. Inferring Phylogenies From MtDNA Variation: Mitochondrial-Gene Trees Versus Nuclear-Gene Trees. Evolution 1995, 49, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, L.; Gorring, P.; Cognato, A.I. DNA vs. Morphology in Delineating Species Boundaries of Endemic Mongolian Eodorcadion Taxa (Coleoptera: Cerambycidae). Diversity 2023, 15, 662. [Google Scholar] [CrossRef]
- Andermann, T.; Fernandes, A.M.; Olsson, U.; Töpel, M.; Pfeil, B.; Oxelman, B.; Aleixo, A.; Faircloth, B.C.; Antonelli, A. Allele Phasing Greatly Improves the Phylogenetic Utility of Ultraconserved Elements. Syst. Biol. 2019, 68, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Moulton, J.K.; Wiegmann, B.M. Evolution and Phylogenetic Utility of CAD (Rudimentary) among Mesozoic-Aged Eremoneuran Diptera (Insecta). Mol. Phylogenet. Evol. 2004, 31, 363–378. [Google Scholar] [CrossRef]
- Danforth, B.N.; Fang, J.; Sipes, S. Analysis of Family-Level Relationships in Bees (Hymenoptera: Apiformes) Using 28S and Two Previously Unexplored Nuclear Genes: CAD and RNA Polymerase II. Mol. Phylogenet. Evol. 2006, 39, 358–372. [Google Scholar] [CrossRef]
# Species in Tree (Including Outgroups) | Best ASAP Score # Species | Difference (# spp.) | Threshold Value for Best ASAP Score | ASAP Rank of Score Matching True Species # | Species Threshold of Correct ASAP Delim. | Empirical Intra Q3 Score | Empirical Inter Q1 Score | Is Best Species Threshold within Q3–Q1 Gap? | |
---|---|---|---|---|---|---|---|---|---|
COI | |||||||||
Monochamus | 21 | 3 | 18 | 0.108388 | 7th | 0.011198 | 0.027 | 0.031 | no |
Scolytus | 38 | 35 | 3 | 0.04616 | 6th | 0.018987 | 0.016 | 0.158 | yes |
Cyclorhipidion | 21 | 31 | 10 | 0.040572 | 8th | 0.109425 | 0.089 | 0.142 | yes |
Xyleborus | 8 | 14 | 6 | 0.020031 | 2nd | 0.112481 | 0.086 | 0.16 | yes |
Bembidion | 20 | 16 | 4 | 0.027204 | 7th (19 spp.) | 0.004669 | 0.003 | 0.096 | yes |
CAD | |||||||||
Monochamus | 21 | 3 | 18 | 0.126855 | 4th (19 spp.) | 0.003886 | 0.002 | 0.014 | yes |
Scolytus | 44 | 19 | 25 | 0.044184 | 6th (48 spp.) | 0.003189 | 0.004 | 0.057 | no |
Cyclorhipidion | 16 | 18 | 2 | 0.006112 | 3rd (17 spp.) | 0.009061 | 0.015 | 0.042 | no |
Xyleborus | 8 | 3 | 5 | 0.143786 | 4th | 0.009514 | 0.004 | 0.015 | yes |
Bembidion | 20 | 3 | 17 | 0.174192 | tied-2nd | 0.007185 | 0.009 | 0.029 | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorring, P.S.; Cognato, A.I. The Case for a Nuclear Barcode: Using the CAD CPS Region for Species and Genus Level Discrimination in Beetles. Diversity 2023, 15, 847. https://doi.org/10.3390/d15070847
Gorring PS, Cognato AI. The Case for a Nuclear Barcode: Using the CAD CPS Region for Species and Genus Level Discrimination in Beetles. Diversity. 2023; 15(7):847. https://doi.org/10.3390/d15070847
Chicago/Turabian StyleGorring, Patrick S., and Anthony I. Cognato. 2023. "The Case for a Nuclear Barcode: Using the CAD CPS Region for Species and Genus Level Discrimination in Beetles" Diversity 15, no. 7: 847. https://doi.org/10.3390/d15070847
APA StyleGorring, P. S., & Cognato, A. I. (2023). The Case for a Nuclear Barcode: Using the CAD CPS Region for Species and Genus Level Discrimination in Beetles. Diversity, 15(7), 847. https://doi.org/10.3390/d15070847