Long-Term Population Trends and Diversity Shifts among Shorebirds: A Predictor of Biodiversity Loss along the Arabian Gulf Coasts
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Shorebird Survey
2.3. Statistical Analysis
3. Results
3.1. Species Account
3.2. Diversity, Relative Abundance, and Species Trends over the Years
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, N.; Tan, K.; Chen, Y.; Ma, Z. Key research issues concerning the conservation of migratory shorebirds in the Yellow Sea region. Bird Conserv. Int. 2015, 25, 38–52. [Google Scholar] [CrossRef]
- Koleček, J.; Reif, J.; Šálek, M.; Hanzelka, J.; Sottas, C.; Kubelka, V. Global population trends in shorebirds: Migratory behaviour makes species at risk. Sci. Nat. 2021, 108, 9. [Google Scholar] [CrossRef]
- Ellis, K.S.; Anteau, M.J.; Cuthbert, F.J.; Gratto-Trevor, C.L.; Jorgensen, J.G.; Newstead, D.J.; Powell, L.A.; Ring, M.M.; Sherfy, M.H.; Swift, R.J.; et al. Impacts of extreme environmental disturbances on piping plover survival are partially moderated by migratory connectivity. Biol. Conserv. 2021, 264, 109371. [Google Scholar] [CrossRef]
- Rashiba, A.P.; Jishnu, K.; Byju, H.; Shifa, C.T.; Anand, J.; Vichithra, K.; Xu, Y.; Nefla, A.; Bin Muzaffar, S.; Aarif, K.M.; et al. The Paradox of Shorebird Diversity and Abundance in the West Coast and East Coast of India: A Comparative Analysis. Diversity 2022, 14, 885. [Google Scholar] [CrossRef]
- Joulami, L.; El Hamoumi, R.; Daief, Z.; Bazairi, H.; Lopes, R. Impact of shorebird predation on intertidal macroinvertebrates in a key North African Atlantic wintering site: An experimental approach. Afr. J. Mar. Sci. 2019, 41, 1–9. [Google Scholar] [CrossRef]
- Norris, D.R. Carry-over effects and habitat quality in migratory populations. Oikos 2005, 109, 178–186. [Google Scholar] [CrossRef]
- Anderson, C.; Lenore, F.; Rausch, J.; Martin, J.-L.; Daufresne, T.; Smith, P.A. Climate-related range shifts in Arc-tic-breeding shorebirds. Ecol. Evol. 2023, 13, e9797. [Google Scholar] [CrossRef]
- Placyk, J.S.; Harrington, B.A. Prey abundance and habitat use by migratory shorebirds at coastal stopover sites in Connecticut. J. Field Ornithol. 2004, 75, 223–231. [Google Scholar] [CrossRef]
- Butler, R.W.; Davidson, N.C.; Morrison, R.I.G. Global-Scale Shorebird Distribution in Relation to Productivity of Near-Shore Ocean Waters. Waterbirds 2001, 24, 224–232. [Google Scholar] [CrossRef]
- Norazlimi, N.; Ramli, R. Temporal variation of shorebirds population in two different mudflats areas. Int. J. Biol. Agric. Food Biotechnol. Eng. 2014, 8, 1314–1320. [Google Scholar] [CrossRef]
- Smith, R.V.; Stafford, J.D.; Yetter, A.P.; Horath, M.M.; Hine, C.S.; Hoover, J.P. Foraging Ecology of Fall-Migrating Shorebirds in the Illinois River Valley. PLoS ONE 2012, 7, e45121. [Google Scholar] [CrossRef]
- Touhami, F.; Idrissi, H.R.; Benhoussa, A. Foraging behaviour of wintering shorebirds at Merja Zerga lagoon (Atlantic coast, Morocco). Ostrich 2020, 91, 244–251. [Google Scholar] [CrossRef]
- Aarif, K.M. Some Aspects of Feeding Ecology of Lesser Sand Plover in Three Different Zones in the Kadalundi Estuary, Kerala and South India. Podoces 2009, 4, 100–107. [Google Scholar]
- Aarif, K.M.; Muzaffar, S.B.; Babu, S.; Prasadan, P.K. Shorebird assemblages respond to anthropogenic stress by altering habitat use in a wetland in India. Biodivers. Conserv. 2014, 23, 727–740. [Google Scholar] [CrossRef]
- Aarif, K.; Nefla, A.; Nasser, M.; Prasadan, P.; Athira, T.; Bin Muzaffar, S. Multiple environmental factors and prey depletion determine declines in abundance and timing of departure in migratory shorebirds in the west coast of India. Glob. Ecol. Conserv. 2021, 26, e01518. [Google Scholar] [CrossRef]
- Steibl, S.; Laforsch, C. The importance of Maldives as a wintering ground for migratory birds of the Central Asian Flyway. Forktail 2021, 37, 80–87. [Google Scholar]
- Szabo, J.; Mundkur, T. Conserving Wetlands for Migratory Waterbirds in South Asia. In Wetland Science Perspectives from South Asia; Prusty, B., Chandra, R., Azeez, P., Eds.; Springer: New Delhi, India, 2017; pp. 105–127. [Google Scholar] [CrossRef]
- Piersma, T.; Lok, T.; Chen, Y.; Hassell, C.J.; Yang, H.-Y.; Boyle, A.; Slaymaker, M.; Chan, Y.-C.; Melville, D.S.; Zhang, Z.-W.; et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 2016, 53, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Naser, H.A. Marine Ecosystem Diversity in the Arabian Gulf: Threats and Conservation. In Biodiversity. The Dynamic Balance of the Planet; Grillo, O., Ed.; Intechopen: London, UK, 2014; pp. 297–328. Available online: https://www.intechopen.com/books/3821 (accessed on 9 February 2023).
- Al-Sayed, H.; Naser, H.; Al-Wedaei, K. Observations on macrobenthic invertebrates and wader bird assemblages in a protected marine mudflat in Bahrain. Aquat. Ecosyst. Health Manag. 2008, 11, 450–456. [Google Scholar] [CrossRef]
- Al-Osaimi, A.; Ali, T.S.; Al-Zubari, W.; Nasser, H. Effect of brine discharge from Al-Dur RO desalination plant on the infauna species composition in the East Coast of Bahrain. Desalination Water Treat. 2020, 176, 29–37. [Google Scholar] [CrossRef]
- Marzooq, H.; Naser, H.A.; Elkanzi, E.M. Quantifying exposure levels of coastal facilities to oil spills in Bahrain, Arabian Gulf. Environ. Monit. Assess. 2019, 191, 160. [Google Scholar] [CrossRef]
- Feary, D.A.; Burt, J.; Bauman, A.G.; Al Hazeem, S.; Abdel-Moati, M.A.; Al-Khalifa, K.A.; Anderson, D.M.; Amos, C.; Baker, A.; Bartholomew, A.; et al. Critical research needs for identifying future changes in Gulf coral reef ecosystems. Mar. Pollut. Bull. 2013, 72, 406–416. [Google Scholar] [CrossRef]
- Evans, M.I. Important Bird Areas in the Middle East; Birdlife International: Cambridge, UK, 1994. [Google Scholar]
- Hirschfeld, E. Migration patterns of some regularly occurring waders in Bahrain 1990–1992. Wader Study Group Bull. 1994, 74, 36–49. [Google Scholar]
- Hirschfeld, E.; Mohamed, S.A.; Stawarczyk, T. Migration pattern, weight, measurements and moult of waders ringing in August-September 1992 in Bahrain. Wader Study Group Bull. 1996, 80, 69–77. [Google Scholar]
- Linden, O. Report of Marine Pollution and Fisheries in Bahrain; FAO: Rome, Italy, 1982. [Google Scholar]
- Naser, H.A.; Hoad, G. An investigation of salinity tolerance and salt secretion in protected mangroves, Bahrain. In Proceedings of the Gulf II: An International Conference. The State of the Gulf Ecosystem: Functioning and Services, Kuwait City, Kuwait, 7–9 February 2011. [Google Scholar]
- Naser, H.A. Community Structures of Benthic Macrofauna in Reclaimed and Natural Intertidal Areas in Bahrain, Arabian Gulf. J. Mar. Sci. Eng. 2022, 10, 945. [Google Scholar] [CrossRef]
- Howes, J.G.; Bakewell, D. Shorebird Studies Manual; AWB Publication: Kuala Lumpur, Malaysia, 1989; p. 362. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 25 August 2022).
- Ahmed, S.; Khan, S.; Shah, J.N.; Al Hammadi, A.A.; Al Hammadi, E.A.; Javed, S. Eurasian Stone Curlew breeding in Abu Dhabi, UAE. Phoenix 2013, 29, 2–4. [Google Scholar]
- Almalki, M.; AlRashidi, M.; Shobrak, M.; Székely, T. Breeding distribution and conservation of the Crab Plover (Dromas ardeola) in Saudi Arabia (Aves: Charadriiformes). Zool. Middle East 2014, 60, 6–12. [Google Scholar] [CrossRef]
- Bom, R.A.; Al-Nasrallah, K. Counts and breeding biology of Crab Plovers Dromas ardeola on Bubiyan Islands, Kuwait, in 2012–2014. Wader Study 2015, 122, 212–220. [Google Scholar] [CrossRef]
- Ayala-Perez, V.O.; Carmona, R.; Arce, N.; Albores-Barajas, Y.V. Over-summering shorebirds in Guerrero Negro, Baja California Sur, Mexico and the particular case of the Marbled Godwit. Wader Study 2021, 128, 109–116. [Google Scholar] [CrossRef]
- Klaassen, M.; Hoye, B.J.; Nolet, B.A.; Buttemer, W.A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Kuwae, T.; Miyoshi, E.; Hosokawa, S.; Ichimi, K.; Hosoya, J.; Amano, T.; Moriya, T.; Kondoh, M.; Ydenberg, R.C.; Elner, R.W. Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecol. Lett. 2012, 15, 347–356. [Google Scholar] [CrossRef]
- Schnurr, P.J.; Drever, M.C.; Elner, R.W.; Harper, J.; Arts, M.T. Peak Abundance of Fatty Acids From Intertidal Biofilm in Relation to the Breeding Migration of Shorebirds. Front. Mar. Sci. 2020, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Canham, R.; Flemming, S.A.; Hope, D.D.; Drever, M.C. Sandpipers go with the flow: Correlations between estuarine conditions and shorebird abundance at an important stopover on the Pacific Flyway. Ecol. Evol. 2021, 11, 2828–2841. [Google Scholar] [CrossRef]
- Mishra, H.; Kumar, V.; Kumar, A. Resource Partitioning between Two Species of Migratory Waders, Common Redshank Tringa totanus (Linnaeus, 1758) and Little Stint Calidris minuta (Leisler, 1812) (Scolopacidae): A Behavioural Comparison in a Wetland Ecosystem in Bakhira Tal, Uttar Pradesh, India. Acta Zool. Bulg. 2019, 71, 103–111. [Google Scholar]
- Estrella, S.M.; Masero, J.A.; Pérez-Hurtado, A. Small-Prey Profitability: Field Analysis of Shorebirds’ use of Surface Tension of Water to Transport Prey. Ornithology 2007, 124, 1244–1253. [Google Scholar] [CrossRef]
- Rubeena, K.; Nefla, A.; Aarif, K.; AlMaarofi, S.S.; Gijjappu, D.R.; Reshi, O.R. Alterations in hydrological variables and substrate qualities and its impacts on a critical conservation reserve in the southwest coast of India. Mar. Pollut. Bull. 2023, 186, 114463. [Google Scholar] [CrossRef]
- Athira, T.R.; Nefla, A.; Shifa, C.T.; Shamna, H.; Aarif, K.M.; AlMaarofi, S.S.; Rashiba, A.P.; Reshi, O.R.; Jobiraj, T.; Thejass, P.; et al. The impact of long-term environmental change on zooplankton along the southwestern coast of India. Environ. Monit. Assess. 2022, 194, 316. [Google Scholar] [CrossRef]
- A Hobson, K.; Kuwae, T.; Drever, M.C.; E Easton, W.; Elner, R.W. Biofilm and invertebrate consumption by western sandpipers (Calidris mauri) and dunlin (Calidris alpina) during spring migratory stopover: Insights from tissue and breath CO2 isotopic (δ13C, δ15N) analyses. Conserv. Physiol. 2022, 10, coac006. [Google Scholar] [CrossRef]
- Huang, P.; Poon, E.S.K.; Chan, L.Y.; Chan, D.T.C.; Huynh, S.; So, I.W.Y.; Sung, Y.; Sin, S.Y.W. Dietary diversity of multiple shorebird species in an Asian subtropical wetland unveiled by DNA metabarcoding. Environ. DNA 2022, 4, 1381–1396. [Google Scholar] [CrossRef]
- Lu, X.; Yang, H.; Piersma, T.; Sun, L.; Chen, Q.; Jia, Y.; Lei, G.; Cheng, L.; Rao, X. Food resources for Spoon-billed Sandpipers (Calidris pygmaea) in the mudflats of Leizhou Bay, southern China. Front. Mar. Sci. 2022, 9, 1733. [Google Scholar] [CrossRef]
- BirdLife International. Country Profile: Bahrain. 2022. Available online: http://datazone.birdlife.org/country/bahrain/resources (accessed on 28 October 2022).
- Naser, H. Human Impacts on Marine Biodiversity: Macrobenthos in Bahrain, Arabian Gulf. In The Importance of Biological Interactions in the Study of Biodiversity; Lopez-Pujol, J., Ed.; InTech Publishing: London, UK, 2011; pp. 109–126. [Google Scholar] [CrossRef] [Green Version]
- Navedo, J.G.; Ruiz, J. Oversummering in the southern hemisphere by long-distance migratory shorebirds calls for reappraisal of wetland conservation policies. Glob. Ecol. Conserv. 2020, 23, e01189. [Google Scholar] [CrossRef]
- Martín, B.; Delgado, S.; de la Cruz, A.; Tirado, S.; Ferrer, M. Effects of human presence on the long-term trends of migrant and resident shorebirds: Evidence of local population declines. Anim. Conserv. 2014, 18, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Goss-Custard, J.D.; Burton, N.H.K.; Clark, N.A.; Ferns, P.N.; McGrorty, S.; Reading, C.J.; Rehfisch, M.M.; Stillman, R.A.; Townend, I.; West, A.D.; et al. Test of a Behavior-Based Individual-Based Model: Response of Shorebird Mortality to Habitat Loss. Ecol. Appl. 2006, 16, 2215–2222. [Google Scholar] [CrossRef]
- Naser, H.A. Using Macrobenthos as a Tool in Ecological Impact Assessment: Applications in Environmental Impact Assessment (EIA); Lambert Academic Publishing: Saarbrucken, Germany, 2010. [Google Scholar]
- Maggini, I.; Kennedy, L.V.; Elliott, K.H.; Dean, K.M.; MacCurdy, R.; Macmillan, A.; Pritsos, C.A.; Guglielmo, C.G. Trouble on takeoff: Crude oil on feathers reduces escape performance of shorebirds. Ecotoxicol. Environ. Saf. 2017, 141, 171–177. [Google Scholar] [CrossRef]
- Takeshita, R.; Bursian, S.J.; Colegrove, K.M.; Collier, T.K.; Deak, K.; Dean, K.M.; De Guise, S.; DiPinto, L.M.; Elferink, C.J.; Esbaugh, A.J.; et al. A review of the toxicology of oil in vertebrates: What we have learned following the Deepwater Horizon oil spill. J. Toxicol. Environ. Health Part B 2021, 24, 355–394. [Google Scholar] [CrossRef] [PubMed]
- Lagassé, B.J.; Lanctot, R.B.; Barter, M.; Brown, S.; Chiang, C.-Y.; Choi, C.-Y.; Gerasimov, Y.N.; Kendall, S.; Liebezeit, J.R.; Maslovsky, K.S.; et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian–Australasian Flyway. Condor 2020, 122, duaa054. [Google Scholar] [CrossRef]
- Watts, B.D.; Smith, F.M.; Hines, C.; Duval, L.; Hamilton, D.J.; Keyes, T.; Paquet, J.; Pirie-Dominix, L.; Rausch, J.; Truitt, B.; et al. The annual cycle for whimbrel populations using the Western Atlantic Flyway. PLoS ONE 2021, 16, e0260339. [Google Scholar] [CrossRef]
- Henkel, J.R.; Sigel, B.J.; Taylor, C.M. Large-Scale Impacts of the Deepwater Horizon Oil Spill: Can Local Disturbance Affect Distant Ecosystems through Migratory Shorebirds? Bioscience 2012, 62, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Burt, J.A. The environmental costs of coastal urbanization in the Arabian Gulf. City 2014, 18, 760–770. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, H.; Huang, Q.; Zhang, Y.; Hu, M.; Niu, Y.; Zhu, J. Characterization and environmental impact analysis of sea land reclamation activities in China. Ocean Coast. Manag. 2016, 130, 128–137. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuarine Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Burt, J.A.; Bartholomew, A. Towards more sustainable coastal development in the Arabian Gulf: Opportunities for ecological engineering in an urbanized seascape. Mar. Pollut. Bull. 2019, 142, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Aarif, K.; Kaiser, S.A.; Nefla, A.; Almaroofi, S. Over-summering abundance, species composition, and habitat use patterns at a globally important site for migratory shorebirds. Wilson J. Ornithol. 2020, 132, 165–172. [Google Scholar] [CrossRef]
S. No | Common Name | IUCN Status | Status in the Bahrain * | Migratory Status | Peak Count at One Time |
---|---|---|---|---|---|
1 | Little Stint | LC | Common | Winter Visitor | 9421 |
2 | Temminck’s Stint | LC | Uncommon | Winter Visitor | 31 |
3 | Little Ringed Plover | LC | Uncommon | Winter Visitor | 19 |
4 | Kentish Plover | LC | Common | Resident and Breeding | 79 |
5 | Broad-billed Sandpiper | LC | Common | Winter Visitor | 29 |
6 | Common Ringed Plover | LC | Common | Winter Visitor | 44 |
7 | Caspian Plover | LC | Uncommon | Winter Visitor | 14 |
8 | Sanderling | LC | Common | Winter Visitor | 123 |
9 | Curlew Sandpiper | NT | Common | Winter Visitor | 302 |
10 | Dunlin | LC | Common | Winter Visitor | 2781 |
11 | Red-necked Phalarope | LC | Uncommon | Winter Visitor | 11 |
12 | Common Sandpiper | LC | Common | Winter Visitor | 22 |
13 | Lesser Sand Plover | LC | Common | Winter Visitor | 5633 |
14 | Greater Sand Plover | LC | Common | Winter Visitor | 176 |
15 | Ruddy Turnstone | LC | Common | Winter Visitor | 178 |
16 | Wood Sandpiper | LC | Common | Winter Visitor | 78 |
17 | Green Sandpiper | LC | Common | Winter Visitor | 283 |
18 | Terek Sandpiper | LC | Common | Winter Visitor | 33 |
19 | Pacific Golden Plover | LC | Common | Winter Visitor | 32 |
20 | Marsh Sandpiper | LC | Common | Winter Visitor | 22 |
21 | Pintail Snipe | LC | Uncommon | Winter Visitor | 2 |
22 | Great Knot | EN | Uncommon | Winter Visitor | 16 |
23 | Great Snipe | NT | Uncommon | Winter Visitor | 4 |
24 | Common Redshank | LC | Common | Winter Visitor | 256 |
25 | Grey Plover | LC | Common | Winter Visitor | 197 |
26 | Spotted Redshank | LC | Uncommon | Winter Visitor | 12 |
27 | Ruff | LC | Common | Winter Visitor | 16 |
28 | Common Greenshank | LC | Common | Winter Visitor | 174 |
29 | Black-winged Stilt | LC | Common | Resident and Breeding | 92 |
30 | Red-wattled Lapwing | LC | Common | Resident and Breeding | 13 |
31 | Common Snipe | LC | Common | Winter Visitor | 9 |
32 | Crab Plover | LC | Common | Resident and Non-breeding | 19 |
33 | Bar-tailed Godwit | NT | Common | Winter Visitor | 122 |
34 | Black-tailed Godwit | NT | Common | Winter Visitor | 44 |
35 | Eurasian Oystercatcher | NT | Common | Winter Visitor | 18 |
36 | Pied Avocet | LC | Uncommon | Winter Visitor | 33 |
37 | Whimbrel | LC | Common | Winter Visitor | 49 |
38 | Beach Stone-curlew | NT | Uncommon | Resident and Non-breeding | 9 |
39 | Eurasian Curlew | NT | Common | Winter Visitor | 51 |
Years | Shannon’s Index | Gini–Simpson Index | Margalef Richness Index |
---|---|---|---|
2010 | 1.91 (1.90–1.92) | 0.69 (0.69–0.69) | 2.13 (2.13-2.14) |
2011 | 1.91 (1.91–1.92) | 0.70 (0.69–0.70) | 2.14 (2.14-2.14) |
2012 | 1.89 (1.88–1.89) | 0.69 (0.68–0.69) | 2.15 (2.15-2.15) |
2013 | 1.87 (1.86–1.87) | 0.68 (0.68–0.68) | 2.17 (2.17-2.17) |
2014 | 1.88 (1.88–1.89) | 0.68 (0.68–0.69) | 2.18 (2.18-2.18) |
2015 | 1.87 (1.87–1.88) | 0.68 (0.68–0.68) | 2.20 (2.20-2.20) |
2016 | 1.89 (1.88–1.89) | 0.68 (0.68–0.69) | 2.22 (2.22-2.22) |
2017 | 1.90 (1.89–1.90) | 0.69 (0.68–0.69) | 2.24 (2.24-2.24) |
2018 | 1.85 (1.84–1.85) | 0.67 (0.67–0.67) | 2.25 (2.25-2.26) |
2019 | 1.87 (1.86–1.88) | 0.68 (0.68–0.69) | 2.27 (0.27-0.28) |
2020 | 1.82 (1.82–1.83) | 0.66 (0.66–0.67) | 2.29 (2.29-2.28) |
2021 | 1.81 (1.80–1.81) | 0.66 (0.66–0.67) | 2.31 (2.31-2.32) |
S. No | Common Name | Scientific Name | Relative Abundance % | F Value |
---|---|---|---|---|
1 | Little Stint | Calidris minuta | 54.26 | 8245 |
2 | Kentish Plover | Charadrius alexandrinus | 2.56 | 4608 |
3 | Broad-billed Sandpiper | Limicola falcinellus | 0.03 | 652 |
4 | Common Ringed Plover | Charadrius hiaticula | 0.85 | 1094 |
5 | Sanderling | Calidris alba | 0.91 | 1846 |
6 | Curlew Sandpiper | Calidris ferruginea | 3.62 | 155.6 |
7 | Dunlin | Calidris alpina | 13.64 | 4299 |
8 | Red-necked Phalarope | Phalaropus lobatus | 0.08 | 174.9 |
9 | Common Sandpiper | Actitis hypoleucos | 0.34 | 1328 |
10 | Lesser Sand Plover | Charadrius mongolus | 2.41 | 3094 |
11 | Ruddy Turnstone | Arenaria interpres | 2.96 | 1256 |
12 | Wood Sandpiper | Tringa glareola | 0.12 | 1286 |
13 | Green Sandpiper | Tringa ochropus | 0.09 | 1332 |
14 | Terek Sandpiper | Xenus cinereus | 0.88 | 3895 |
15 | Pacific Golden Plover | Pluvialis fulva | 0.38 | 1309 |
16 | Marsh Sandpiper | Tringa stagnatilis | 2.50 | 655.6 |
17 | Common Redshank | Tringa totanus | 3.01 | 2599 |
18 | Grey Plover | Pluvialis squatarola | 1.84 | 1920 |
19 | Ruff | Calidris pugnax | 1.11 | 1663 |
20 | Common Greenshank | Tringa nebularia | 1.63 | 984.1 |
21 | Black-winged Stilt | Himantopus himantopus | 2.35 | 1415 |
22 | Common Snipe | Gallinago gallinago | 0.00 | 37.23 |
23 | Bar-tailed Godwit | Limosa lapponica | 1.65 | 1240 |
24 | Black-tailed Godwit | Limosa limosa | 0.01 | 539.2 |
25 | Eurasian Oystercatcher | Haematopus ostralegus | 0.41 | 82.44 |
26 | Whimbrel | Numenius phaeopus | 1.06 | 1468 |
27 | Eurasian Curlew | Numenius arquata | 1.27 | 4772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamna, H.; Rubeena, K.A.; Naser, H.A.; Athira, T.R.; Singh, A.K.; Almusabeh, A.H.; Zogaris, S.; Al-Sheikhly, O.F.; Xu, Y.; Nefla, A.; et al. Long-Term Population Trends and Diversity Shifts among Shorebirds: A Predictor of Biodiversity Loss along the Arabian Gulf Coasts. Diversity 2023, 15, 468. https://doi.org/10.3390/d15030468
Shamna H, Rubeena KA, Naser HA, Athira TR, Singh AK, Almusabeh AH, Zogaris S, Al-Sheikhly OF, Xu Y, Nefla A, et al. Long-Term Population Trends and Diversity Shifts among Shorebirds: A Predictor of Biodiversity Loss along the Arabian Gulf Coasts. Diversity. 2023; 15(3):468. https://doi.org/10.3390/d15030468
Chicago/Turabian StyleShamna, H., K. A. Rubeena, Humood A. Naser, T. R. Athira, Ajay Kumar Singh, Ali H. Almusabeh, Stamatis Zogaris, Omar F. Al-Sheikhly, Yanjie Xu, Aymen Nefla, and et al. 2023. "Long-Term Population Trends and Diversity Shifts among Shorebirds: A Predictor of Biodiversity Loss along the Arabian Gulf Coasts" Diversity 15, no. 3: 468. https://doi.org/10.3390/d15030468
APA StyleShamna, H., Rubeena, K. A., Naser, H. A., Athira, T. R., Singh, A. K., Almusabeh, A. H., Zogaris, S., Al-Sheikhly, O. F., Xu, Y., Nefla, A., Gijjappu, D. R., Muzaffar, S. B., & Aarif, K. M. (2023). Long-Term Population Trends and Diversity Shifts among Shorebirds: A Predictor of Biodiversity Loss along the Arabian Gulf Coasts. Diversity, 15(3), 468. https://doi.org/10.3390/d15030468