Acinetobacter thutiue sp. nov. Isolated from Oil-Contaminated Soil in Motorbike Repair Workshops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Ecology
2.2. Physiology and Chemotaxonomy
2.3. Phylogenetic Analysis Based on 16S rRNA Gene and Core Genome
2.4. Genome Features
3. Results and Discussion
3.1. Physiology and Chemotaxonomy
3.2. Phylogenetic Analysis Based on 16S rRNA Gene and Core Genome
3.3. Genome Features
4. Conclusions
Description of Acinetobacter thutiue sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brisou, J.; Prevot, A.R. Etudes de Systematique Bacterienne. X. Revision des especes reunies dans le genre Achromobacter. Ann. Inst. Pasteur 1954, 86, 722–728. [Google Scholar]
- Beijerinck, M.W. Pigments as products of oxidation by bacterial action. Koninklijke Nederlandse Akademie Van. Wetenschappen Proc. Ser. B Phys. Sci. 1910, 13, 1066–1077. [Google Scholar]
- Parte, A.C. LPSN—List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 2018, 68, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Moreira, I.; Novo, A.; Hantsis-Zacharov, E.; Lopes, A.R.; Gomila, M.; Nunes, O.C.; Manaia, C.M.; Halpern, M. Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. Int. J. Syst. Evol. Microbiol. 2011, 61, 2837–2843. [Google Scholar] [CrossRef] [PubMed]
- Marí-Almirall, M.; Cosgaya, C.; Pons, M.J.; Nemec, A.; Ochoa, T.J.; Ruiz, J.; Roca, I.; Vila, J. Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru. Int. J. Food Microbiol. 2019, 305, 108248. [Google Scholar] [CrossRef]
- Carvalheira, A.; Gonzales-Siles, L.; Salva-Serra, F.; Lindgren, A.; Svensson-Stadler, L.; Thorell, K.; Pineiro-Iglesias, B.; Karlsson, R.; Silva, J.; Teixeira, P.; et al. Acinetobacter portensis sp. nov. and Acinetobacter guerrae sp. nov., isolated from raw meat. Int. J. Syst. Evol. Microbiol. 2020, 70, 4544–4554. [Google Scholar] [CrossRef]
- Nemec, A.; Musilek, M.; Maixnerova, M.; De Baere, T.; van der Reijden, T.J.; Vaneechoutte, M.; Dijkshoorn, L. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Evol. Microbiol. 2009, 59, 118–124. [Google Scholar] [CrossRef]
- Yacouba, A.; Sissoko, S.; Tchoupou Saha, O.F.; Haddad, G.; Dubourg, G.; Gouriet, F.; Tidjani Alou, M.; Alibar, S.; Million, M.; Lagier, J.C.; et al. Description of Acinetobacter ihumii sp. nov., Microbacterium ihumii sp. nov., and Gulosibacter massiliensis sp. nov., three new bacteria isolated from human blood. FEMS Microbiol. Lett. 2022, 369, fnac038. [Google Scholar] [CrossRef]
- Alvarez-Perez, S.; Lievens, B.; Jacquemyn, H.; Herrera, C.M. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 1532–1539. [Google Scholar] [CrossRef]
- Krizova, L.; Maixnerova, M.; Sedo, O.; Nemec, A. Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst. Appl. Microbiol. 2014, 37, 467–473. [Google Scholar] [CrossRef]
- Radolfova-Krizova, L.; Maixnerova, M.; Nemec, A. Acinetobacter celticus sp. nov., a psychrotolerant species widespread in natural soil and water ecosystems. Int. J. Syst. Evol. Microbiol. 2016, 66, 5392–5398. [Google Scholar] [CrossRef]
- Radolfova-Krizova, L.; Maixnerova, M.; Nemec, A. Acinetobacter pragensis sp. nov., found in soil and water ecosystems. Int. J. Syst. Evol. Microbiol. 2016, 66, 3897–3903. [Google Scholar] [CrossRef]
- Yamahira, K.; Hirota, K.; Nakajima, K.; Morita, N.; Nodasaka, Y.; Yumoto, I. Acinetobacter sp. strain Ths, a novel psychrotolerant and alkalitolerant bacterium that utilizes hydrocarbon. Extremophiles 2008, 12, 729–734. [Google Scholar] [CrossRef]
- Dahal, R.H.; Chaudhary, D.K.; Kim, J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkali tolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch. Microbiol. 2017, 199, 701–710. [Google Scholar] [CrossRef]
- Czarny, J.; Staninska-Pięta, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Wolniewicz, A.; Marecik, R.; Lawniczak, L.; Chrzanowski, L. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. J. Hazard. Mater. 2020, 383, 121168. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, R.; Rao, P.; Wu, B.; Yan, L.; Hu, L.; Park, S.; Ryu, M.; Zhou, X. Bioremediation of Petroleum Hydrocarbons Using Acinetobacter sp. SCYY-5 Isolated from Contaminated Oil Sludge: Strategy and Effectiveness Study. Int. J. Environ. Res. Public. Health 2021, 18, 819. [Google Scholar] [CrossRef]
- Xia, M.; Liu, Y.; Taylor, A.A.; Fu, D.; Khan, A.R.; Terry, N. Crude oil depletion by bacterial strains isolated from a petroleum hydrocarbon impacted solid waste management site in California. Int. Biodeterior. Biodegrad. 2017, 123, 70–77. [Google Scholar] [CrossRef]
- Lányi, B. Classical and Rapid Identification Method for Medically Important Bacteria. In Method in Microbiology 19; Cowell, R., Ed.; Academic Press: Oak Ridge, TN, USA, 1987; pp. 1–65. [Google Scholar]
- Schaeffer, A.B.; Fulton, M. A simplified method of staining endospores. Science 1933, 77, 194. [Google Scholar] [CrossRef]
- Tindall, B.J.; Sikorski, J.; Smibert, R.A.; Krieg, N.R. Phenotypic Characterization and the Principles of Comparative Systematics. In Methods for General and Molecular Microbiology; Reddy, C.A., Ed.; ASM Press: Washington, DC, USA, 2007; pp. 330–393. [Google Scholar]
- Smibert, R.M.; Krieg, N.R. Phenotypic characterization. In Methods for General and Molecular Bacteriology; Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R., Eds.; American Society for Microbiology: Washington, DC, USA, 1994; pp. 607–654. [Google Scholar]
- Clinical and Laboratory Standards Institute. CLSI standard M100-S27. In Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Minnikin, D.E.; O’donnell, A.G.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J.H. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. Technol. Note 2001, 101, 1–6. [Google Scholar]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Na, S.I.; Kim, Y.O.; Yoon, S.H.; Ha, S.M.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56, 280–285. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Juni, E. Interspecies transformation of Acinetobacter: Genetic evidence for a ubiquitous genus. J. Bacteriol. 1972, 112, 917–931. [Google Scholar] [CrossRef]
- Nemec, A.; Radolfova-Krizova, L.; Maixnerova, M.; Vrestiakova, E.; Jezek, P.; Sedo, O. Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), Acinetobacter modestus sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 1673–1685. [Google Scholar]
- Nemec, A.; Radolfova-Křížován, L.; Maixnerova, M.; Nemec, M.; Shestivska, V.; Španělová, V.; Španělová, P.; Kyselková, M.; Wilharm, G.; Higgins, P.G. Acinetobacter amyesii sp. nov., widespread in the soil and water environment and animals. Syst. Appl. Microbiol. 2022, 72, 005642. [Google Scholar] [CrossRef]
- Hassler, H.B.; Probert, B.; Moore, C.; Lawson, E.; Jackson, R.W.; Russell, B.T.; Richards, V.P. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 2022, 10, 104. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Vaz-Moreira, I.; Svensson-Stadler, L.; Moore, E.R.; Manaia, C.M. Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl. Microbiol. Biotechnol. 2013, 97, 329–340. [Google Scholar] [CrossRef]
- Nemec, A.; Radolfová-Křížová, L.; Maixnerová, M.; Nemec, M.; Clermont, D.; Bzdil, J.; Ježek, P.; Španělová, P. Revising the taxonomy of the Acinetobacter lwoffii group: The description of Acinetobacter pseudolwoffii sp. nov. and emended description of Acinetobacter lwoffii. Syst. Appl. Microbiol. 2019, 42, 159–167. [Google Scholar] [CrossRef]
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growth at 44 °C | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Growth at 41 °C | - | - | - | 50W (D) | - | - | - | - | - | - | 93 (+) | - | 94 (+) | -! |
Growth at 37 °C | + | 90 (+) | + | + | + | + (W) | - | 82 (+) | + | + | + | + | + | + |
Growth at 35 °C | + | + | + | + | + | + | - | + | + | + | + | + | + | + |
Growth at 32 °C | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Acidification of D-glucose | - | - | 89 (+) | + | - | - | - | + | - | - | - | - | 75 (+) | + |
Hemolysis of sheep blood | - | - | + | 89 (+) | + | + | + | + | + | + | 50 (-) | + | + | + |
Liquefaction of gelatin | - | - | - | + | + | - | - | + | + | + | - | 80 (+) | 94 (+) | + |
Utilization of | ||||||||||||||
Acetate | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
trans-Aconitate | - | - | 56 (-) | 44 (-) | + | - | - | - | 11 (-) | - | - | - | 63 (+) | + |
Adipate | - | - | 89 (+) | + | 67 (-) | 14 (-) | - | - | 22 (-) | + | - | 20 (-) | - | - |
β-Alanine | + (W) | - | + | 89 (+) | + | - | - | 17 (-) | + | + | - | - | - | - |
4-Aminobutyrate | - | - | + | + | D (-) | - | - | - | + | D | 86 (+) | + | + | + |
L-Arabinose | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
L-Arginine | - | - | + | + | + | + | 50 (+) | + | + | + | 93 (+) | + | 94 (+) | + |
L-Aspartate | - | - | 11 (D) | 11 (-) | - | - | - | - | - | - | 21 (+) | - | 31 (-) | + |
Azelate | - | - | 89 (+) | + | 67 (-) | - | - | - | 22 (-) | + | - | 20 (-) | - | - |
Benzoate | 50 (+) | - | + | + | + | + | - | 17 (-) | + | + | 79 (+) | + | - | - |
2,3-Butanediol | - | - | - | - | - | 14 (-) | - | - | - | - | - | - | - | - |
Citraconate | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Citrate (Simmons) | - | - | + | + | + | - | - | + | + | + | 79 (+) | + | 75 (+) | + |
Ethanol | + | + | - | - | - | + | + | 17 (-) | 11 (-) | 22 (-) | 93 (+) | + | 94 (+) | + |
Gentisate | - | - | 89 (+) | - | + | - | - | 88 (+) | 33 (-) | 11 (+) | - | - | 81 (+) | - |
D-Gluconate | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
D-Glucose | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
L-Glutamate | - | - | + | + | + | + | + | + | + | + | + | + | + | + |
Glutarate | - | - | 89 (+) | + | 33 (-) | - | - | - | + | D (-) | - | - | - | - |
Histamine | - | - | - | 11 (-) | - | - | - | - | - | - | - | - | - | - |
L-Histidine | + | - | + | + | + | + | + | + | + | + | 93 (+) | + | + | + |
4-Hydroxybenzoate | D | - | + | + | + | - | - | 83 (+) | + | 89 (+) | - | - | 81 (+) | + |
DL-Lactate | + (W) | - | + | + | + | - | - | 96( +) | + | + | 93 (+) | - | - | - |
L-Leucine | - | - | + | + | 83 (-) | - | - | 13 (-) | + | + | 14 (-) | + | 88 (+) | + |
Levulinate | - | - | - | 11 (-) | - | - | - | - | - | - | - | - | - | - |
D-Malate | + | - | + | 89 (+) | + | D | - | 92 (+) | + | + | 79 (D) | + | 88 (+) | + |
Malonate | - | - | + | + | 67 (+) | - | - | 8 (-) | 22 (-) | 78 (+) | - | + | - | - |
L-Ornithine | + (W) | 20 (-) | + | 89 (+) | + | - | - | - | 89 (D) | 56 (+) | - | - | - | - |
Phenylacetate | D | - | + | + | 83 (-) | - | - | 96 (+) | 89 (+) | + | - | - | - | - |
L-Phenylalanine | - | - | + | + | + | - | - | 96 (+) | 89 (+) | 89 (+) | - | - | - | - |
Putrescine | - | - | 78 (+) | + | - | - | - | - | + | - | - | - | - | - |
D-Ribose | - | - | 22 (+) | - | - | - | - | - | - | - | - | - | - | - |
L-Tartrate | - | - | - | 22 (-) | - | - | - | - | - | - | - | - | - | - |
Tricarballylate | - | - | 56 (-) | 44 (-) | + | - | - | - | 11 (-) | - | - | - | - | - |
Trigonelline | - | - | + | 67 (+) | - | + | 50 (+) | 33 (-) | - | - | - | - | - | - |
Tryptamine | - | - | D | 22 (D) | 50 (+) | - | - | - | 11 (+) | - | - | - | - | - |
Fatty Acid | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Saturated | |||||||
C10:0 | 0.56 | 0.57 | 0.33 | 1.35 | 0.13 | - | 1.35 |
C11:0 | - | - | - | 0.11 | - | - | - |
C12:0 | 2.92 | 3.34 | 6.21 | 2.80 | 6.55 | 9.31 | 5.18 |
C14:0 | 0.98 | 1.19 | 0.52 | 1.27 | 0.81 | 0.78 | |
C16:0 | 18.96 | 22.53 | 9.02 | 15.59 | 14.05 | 20.46 | 24.43 |
N alcohol C16:0 | - | - | - | 0.14 | - | 0.17 | - |
C17:0 | 0.19 | 0.19 | 0.37 | 0.92 | 0.22 | - | 0.29 |
Iso C17:0 | - | 0.23 | 1.04 | - | - | - | |
C18:0 | 2.12 | 0.33 | - | 1.68 | 1.85 | 1.19 | 0.97 |
10-methyl C17:0 | - | - | - | - | - | - | - |
anteiso–C17:0 | 0.17 | - | - | - | - | - | - |
Unsaturated | |||||||
C14:1 ω5c | 0.10 | - | - | - | - | - | - |
C16:1 ω5c | - | - | - | 0.10 | - | - | - |
C16:1 ω7c alcohol | - | - | - | - | - | - | - |
C16:1 ω9c | - | - | - | 0.9 | - | - | - |
C17:1 ω8c | 0.60 | 0.77 | 2.49 | 2.86 | 0.58 | 0.22 | 1.22 |
C18:1 ω9c | 49.42 | 36.56 | 39.37 | 38.41 | 29.76 | 30.14 | 29.68 |
C18:1 ω5c | - | - | - | - | - | - | 0.11 |
C18:3 ω6c | 0.11 | - | - | 0.22 | - | 0.21 | - |
Iso I C19:1 | 0.14 | 0.31 | - | - | - | 0.18 | 0.17 |
Hydroxy | |||||||
C8:0 3OH | - | - | 0.13 | - | - | - | - |
C12:0 2OH | 2.15 | 2.33 | 3.63 | 2.89 | 0.57 | 0.63 | 2.25 |
C12:0 3OH | 3.79 | 4.18 | 6.73 | 4.75 | 3.04 | 5.59 | 5.19 |
Summed features * | |||||||
Summed Feature 1 | - | - | - | 0.13 | - | - | - |
Summed Feature 2 | 0.14 | 0.24 | 0.28 | 0.3 | 2.61 | 0.10 | 0.22 |
Summed Feature 3 | 16.39 | 25.89 | 29.75 | 23.70 | 36.84 | 28.41 | 26.90 |
Summed Feature 8 | 1.18 | 1.48 | 0.94 | 0.89 | 2.49 | 2.40 | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuyet, N.L.T.; Kim, J. Acinetobacter thutiue sp. nov. Isolated from Oil-Contaminated Soil in Motorbike Repair Workshops. Diversity 2023, 15, 1179. https://doi.org/10.3390/d15121179
Tuyet NLT, Kim J. Acinetobacter thutiue sp. nov. Isolated from Oil-Contaminated Soil in Motorbike Repair Workshops. Diversity. 2023; 15(12):1179. https://doi.org/10.3390/d15121179
Chicago/Turabian StyleTuyet, Nhan Le Thi, and Jaisoo Kim. 2023. "Acinetobacter thutiue sp. nov. Isolated from Oil-Contaminated Soil in Motorbike Repair Workshops" Diversity 15, no. 12: 1179. https://doi.org/10.3390/d15121179
APA StyleTuyet, N. L. T., & Kim, J. (2023). Acinetobacter thutiue sp. nov. Isolated from Oil-Contaminated Soil in Motorbike Repair Workshops. Diversity, 15(12), 1179. https://doi.org/10.3390/d15121179