Niche Breadth Predicts Geographical Range Size and Northern Range Shift in European Dragonfly Species (Odonata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Range Size
3.2. Range Shifts
4. Discussion
4.1. Data Quality
4.2. Do Species Reproducing in Permanent Standing Water and Temporary Water Have Larger Ranges Than Species Reproducing in Permanent Running Water?
4.3. Do Species Reproducing in Temporary Habitats Track Changes Better Than Species in Permanent Habitats?
4.4. Do Species Reproducing in Permanent Running Water Contract More or Expand Less Than Species in Permanent Standing Water and Temporary Water?
4.5. Do Generalist Species Outperform Specialists with a Narrow Niche Breadth?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, N.; Dylmer, E.; Olsen, K. Status of Aeshna Serrata in Denmark. Brachytron 2014, 16, 38–42. [Google Scholar]
- Riservato, E.; Boudot, J.; Ferreira, S.; Jović, M.; Kalkman, V.; Schneider, W.; Samraoui, B.; Cuttelod, A. The Status and Distribution of Dragonflies of the Mediterranean Basin; IUCN: Gland, Switzerland; Malaga, Spain, 2009. [Google Scholar]
- de Knijf, G.; Anselin, A. When South Goes North: Mediterranean Dragonflies (Odonata) Conquer Flanders (North-Belgium). BioRisk 2010, 5, 141–153. [Google Scholar] [CrossRef]
- de Kniff, G.; Anselin, A.; Goffart, P. Changes in Ranges: Invertebrates on the Move. In Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden, Germany, 2–5 September 2001; Reemer, M., van Helsdingen, P., Kleukers, R., Eds.; European Invertebrate Survey: Leiden, Germany, 2003; pp. 33–38. [Google Scholar]
- de Knijf, G.; Flenker, U.; Vanappelghem, C.; Manci, C.O.; Kalkman, V.J.; Demolder, H. The Status of Two Boreo-Alpine Species, Somatochlora Alpestris and S. Arctica, in Romania and Their Vulnerability to the Impact of Climate Change (Odonata: Corduliidae). Int. J. Odonatol. 2011, 14, 111–126. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Kalkman, V.J. Changing Temperature Regimes Have Advanced the Phenology of Odonata in the Netherlands. Ecol. Entomol. 2008, 33, 394–402. [Google Scholar] [CrossRef]
- Gonseth, Y.; Monnerat, C. Recent Changes in Distribution of Dragonflies in Switzerland (Odonata). In Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden, Germany, 2–5 September 2001; Reemer, M., van Helsdingen, P., Kleukers, R., Eds.; European Invertebrate Survey: Leiden, Germany, 2003; pp. 23–31. [Google Scholar]
- Grewe, Y.; Hof, C.; Dehling, D.M.; Brandl, R.; Brändle, M. Recent Range Shifts of European Dragonflies Provide Support for an Inverse Relationship between Habitat Predictability and Dispersal. Glob. Ecol. Biogeogr. 2013, 22, 403–409. [Google Scholar] [CrossRef]
- Hassall, C.; Thompson, D.J. The Effects of Environmental Warming on Odonata: A Review. Int. J. Odonatol. 2008, 11, 131–153. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Thomas, C.D. A Northward Shift of Range Margins in British Odonata. Glob. Change Biol. 2005, 11, 502–506. [Google Scholar] [CrossRef]
- Hof, C.; Brändle, M.; Dehling, D.M.; Munguía, M.; Brandl, R.; Araújo, M.B.; Rahbek, C. Habitat Stability Affects Dispersal and the Ability to Track Climate Change. Biol. Lett. 2012, 8, 639–643. [Google Scholar] [CrossRef]
- Kalkman, V.J.; Boudot, J.-P.; Bernard, R.; Conze, K.-J.; de Knijf, G.; Dyatlova, E.; Ferreira, S.; Jović, M.; Ott, J.; Riservato, E.; et al. European Red List of Dragonflies; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Ott, J. Dragonflies and Climatic Change—Recent Trends in Germany and Europe. BioRisk 2010, 5, 253–286. [Google Scholar] [CrossRef]
- Ott, J. Expansion of Mediterranean Odonata in Germany and Europe—Consequences of Climatic Changes. In Fingerprints of Climate Change—Adapted Behaviour and Shifting Species Ranges; Walther, G., Burga, C., Edwards, P., Eds.; Kluwer Academic; Plenum Publication: New York, NY, USA, 2001; pp. 89–111. [Google Scholar]
- Suhling, F.; Sahlén, G.; Gorb, S.; Kalkman, V.; Dijkstra, K.-D.; van Tol, J. Order Odonata. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates; Thorp, J., Rogers, D., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 893–932. [Google Scholar]
- Termaat, T.; Kalkman, V.; Bouwman, J. Changes in the Range of Dragonflies in the Netherlands and the Possible Role of Temperature Change. BioRisk 2010, 5, 155–173. [Google Scholar] [CrossRef]
- Lenoir, J.; Svenning, J.C. Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The Distributions of a Wide Range of Taxonomic Groups Are Expanding Polewards. Glob. Change Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Davey, C.M.; Chamberlain, D.E.; Newson, S.E.; Noble, D.G.; Johnston, A. Rise of the Generalists: Evidence for Climate Driven Homogenization in Avian Communities. Glob. Ecol. Biogeogr. 2012, 21, 568–578. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.D.; Huntley, B. Climate and Habitat Availability Determine 20th Century Changes in a Butterfly’s Range Margin. Proc. R. Soc. B Biol. Sci. 1999, 266, 1197–1206. [Google Scholar] [CrossRef]
- Lancaster, L.T.; Dudaniec, R.Y.; Hansson, B.; Svensson, E.I. Latitudinal Shift in Thermal Niche Breadth Results from Thermal Release during a Climate-Mediated Range Expansion. J. Biogeogr. 2015, 42, 1953–1963. [Google Scholar] [CrossRef]
- Thomas, C.D.; Bodsworth, E.J.; Wilson, R.J.; Simmons, A.D.; Davies, Z.G.; Musche, M.; Conradt, L. Ecological and Evolutionary Processes at Expanding Range Margins. Nature 2001, 411, 577–581. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 59–71. [Google Scholar] [CrossRef]
- Channell, R.; Lomollno, M.v. Dynamic Biogeography and Conservation of Endangered Species. Nature 2000, 403, 84–86. [Google Scholar] [CrossRef]
- IPCC Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment; Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Campridge, UK; New York, NY, USA, 2021.
- Corbet, P.S. Dragonflies: Behavior and Ecology of Odonata; Harley Books: Colchester, UK, 2004. [Google Scholar]
- Corbet, P.S.; Suhling, F.; Soendgerath, D. Voltinism of Odonata: A Review. Int. J. Odonatol. 2006, 9, 1–44. [Google Scholar] [CrossRef]
- Cham, S.A. Ovipositing Behaviour and Observations on Eggs and Prolarva of Ischnura Pumilio. J. Br. Dragonfly Soc. 1992, 8, 6–10. [Google Scholar]
- de Block, M.; McPeek, M.A.; Stoks, R. Life-History Evolution When Lestes Damselflies Invaded Vernal Ponds. Evol. Ecol. 2008, 62, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, G.; Mackay, R.; Smith, I. Evolutionary and Ecological Strategies of Animals in Annual Temporary Pools. Arch. Für Hydrobiol. Suppl. 1980, 58, 97–206. [Google Scholar]
- Fischer, Z. Food Composition and Food Preference in Larvae of Lestes sponsa (L.) in Astatic Water Environment. Pol. Arch. Hydrobiol. 1967, 14, 59–71. [Google Scholar]
- Botts, E.A.; Erasmus, B.F.N.; Alexander, G.J. Small Range Size and Narrow Niche Breadth Predict Range Contractions in South African Frogs. Glob. Ecol. Biogeogr. 2013, 22, 567–576. [Google Scholar] [CrossRef]
- Hof, C.; Brändle, M.; Brandl, R. Lentic Odonates Have Larger and More Northern Ranges than Lotic Species. J. Biogeogr. 2006, 33, 63–77. [Google Scholar] [CrossRef]
- Menéndez, R.; Megías, A.G.; Hill, J.K.; Braschler, B.; Willis, S.G.; Collingham, Y.; Fox, R.; Roy, D.B.; Thomas, C.D. Species Richness Changes Lag behind Climate Change. Proc. R. Soc. B Biol. Sci. 2006, 273, 1465–1470. [Google Scholar] [CrossRef]
- Ozinga, W.A.; Colles, A.; Bartish, I.V.; Hennion, F.; Hennekens, S.M.; Pavoine, S.; Poschlod, P.; Hermant, M.; Schaminée, J.H.J.; Prinzing, A. Specialists Leave Fewer Descendants within a Region than Generalists. Glob. Ecol. Biogeogr. 2013, 22, 213–222. [Google Scholar] [CrossRef]
- Powney, G.D.; Cham, S.S.A.; Smallshire, D.; Isaac, N.J.B. Trait Correlates of Distribution Trends in the Odonata of Britain and Ireland. PeerJ 2015, 3, e1410. [Google Scholar] [CrossRef]
- Pöyry, J.; Luoto, M.; Heikkinen, R.K.; Kuussaari, M.; Saarinen, K. Species Traits Explain Recent Range Shifts of Finnish Butterflies. Glob. Chang Biol. 2009, 15, 732–743. [Google Scholar] [CrossRef]
- Warren, M.S.; Hill, J.K.; Thomas, J.A.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.B.; Telfer, M.G.; Jeffcoate, S.; Harding, P.; et al. Rapid Responses of British Butterflies to Opposing Forces of Climate and Habitat Change. Nature 2001, 414, 65–69. [Google Scholar] [CrossRef]
- Angert, A.L.; Crozier, L.G.; Rissler, L.J.; Gilman, S.E.; Tewksbury, J.J.; Chunco, A.J. Do Species’ Traits Predict Recent Shifts at Expanding Range Edges? Ecol. Lett. 2011, 14, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Foufopoulos, J.; Kilpatrick, A.M.; Ives, A.R. Climate Change and Elevated Extinction Rates of Reptiles from Mediterranean Islands. Am. Nat. 2011, 177, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.K.; Thomas, C.D.; Fox, R.; Telfer, M.G.; Willis, S.G.; Asher, J.; Huntley, B. Responses of Butterflies to Twentieth Century Climate Warming: Implications for Future Ranges. Proc. R. Soc. B Biol. Sci. 2002, 269, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Myers, P.; Lundrigan, B.L.; Hoffman, S.M.G.; Haraminac, A.P.; Seto, S.H. Climate-Induced Changes in the Small Mammal Communities of the Northern Great Lakes Region. Glob. Change Biol. 2009, 15, 1434–1454. [Google Scholar] [CrossRef]
- Ruiz, E. Management of Natura 2000 Habitats. 3170 *Mediterranean Temporary Ponds. Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Commission: Luxembourg, 2008. [Google Scholar]
- Pérez-Bilbao, A.; Benetti, C.; Garrido, J. Biodiversity and Conservation of Temporary Ponds—Assessment of the Conservation Status of “Veiga de Ponteliñares”, NW Spain (Natura 2000 Network), Using Freshwater Invertebrates. In Biodiversity in Ecosystems—Linking Structure and Function; Blanco, J., Lo, Y.-H., Eds.; InTech: London, UK, 2015; pp. 241–269. [Google Scholar]
- Askew, R.R. The Dragonflies of Europe; Harley Books (BH & A Harley Ltd.): Colchester, UK, 1988. [Google Scholar]
- ESRI ArcGIS Desktop v. 10.2 [GIS Software]; Environmental Systems Research Institute: Redlands, CA, USA, 2010.
- Dijkstra, K.-D.; Lewington, R. Field Guide to the Dragonflies of Britain and Europe; British Wildlife Publishing: Totnes, UK, 2006. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2015-3. Available online: www.iucnredlist.org (accessed on 17 May 2016).
- Sternberg, K.; Buchwald, R. Die Libellen Baden-Württembergs: Grosslibellen (Anisoptera); Eugen Ulmer: Stuttgart, Germany, 2000; Volume 2. [Google Scholar]
- Sternberg, K.; Buchwald, R. Die Libellen Baden-Württembergs: Allgemeiner Teil, Kleinlibellen (Zygoptera); Eugen Ulmer: Stuttgart, Germany, 1999; Volume 1. [Google Scholar]
- Beschovski, V.; Marinov, M. Fauna, Ecology, and Zoogeography of Dragonflies (Insecta: Odonata) of Bulgaria. In Biogeography and Ecology of Bulgaria; Fet, V., Popov, A., Eds.; Springer: Dordrecht, Germany, 2007; pp. 199–231. [Google Scholar]
- Carchini, G.; della Bella, V.; Solimini, A.G.; Bazzanti, M. Relationships between the Presence of Odonate Species and Environmental Characteristics in Lowland Ponds of Central Italy. Ann. Limnol. Int. J. Limnol. 2007, 43, 81–87. [Google Scholar] [CrossRef]
- Koli, V.K.; Bhatnagar, C.; Shekhawat, D.S. Diversity and Species Composition of Odonates in Southern Rajasthan, India. Proc. Zool. Soc. 2015, 68, 202–211. [Google Scholar] [CrossRef]
- Suhling, F.; Jödicke, R.; Schneider, W. Odonata of African Arid Regions—Are There Desert Species? Cimbebasia 2003, 18, 207–224. [Google Scholar]
- Florencio, M.; Díaz-Paniagua, C. Presencia de Lestes Macrostigma (Eversmann, 1836) (Odonata: Lestidae) En Las Lagunas Temporales Del Parque Nacional de Doñana (Sudoeste de España). Boletín Soc. Entomológica Aragonesa 2012, 50, 579–581. [Google Scholar]
- R Core TeAm. R: A Language and Environment for Statistical Computing; R Core TeAm: Vienna, Austria, 2022. [Google Scholar]
- Rondinini, C.; Wilson, K.A.; Boitani, L.; Grantham, H.; Possingham, H.P. Tradeoffs of Different Types of Species Occurrence Data for Use in Systematic Conservation Planning. Ecol. Lett. 2006, 9, 1136–1145. [Google Scholar] [CrossRef]
- Jetz, W.; Sekercioglu, C.H.; Watson, J.E.M. Ecological Correlates and Conservation Implications of Overestimating Species Geographic Ranges. Conserv. Biol. 2008, 22, 110–119. [Google Scholar] [CrossRef]
- Hawkins, B.A.; Field, R.; Cornell, H.V.; Currie, D.J.; Guégan, J.F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; O’Brien, E.M.; et al. Energy, Water, and Broad-Scale Geographic Patterns of Species Richness. Ecology 2003, 84, 3105–3117. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Jetz, W. Species Richness, Hotspots, and the Scale Dependence of Range Maps in Ecology and Conservation. Proc. Natl. Acad. Sci. USA 2007, 104, 13384–13389. [Google Scholar] [CrossRef] [PubMed]
- Baselga, A.; Lobo, J.M.; Svenning, J.C.; Aragón, P.; Araújo, M.B. Dispersal Ability Modulates the Strength of the Latitudinal Richness Gradient in European Beetles. Glob. Ecol. Biogeogr. 2012, 21, 1106–1113. [Google Scholar] [CrossRef]
- Jocque, M.; Field, R.; Brendonck, L.; de Meester, L. Climatic Control of Dispersal-Ecological Specialization Trade-Offs: A Metacommunity Process at the Heart of the Latitudinal Diversity Gradient? Glob. Ecol. Biogeogr. 2010, 19, 244–252. [Google Scholar] [CrossRef]
- Abbott, J.C.; Bota-Sierra, C.A.; Guralnick, R.; Kalkman, V.; González-Soriano, E.; Novelo-Gutiérrez, R.; Bybee, S.; Ware, J.; Belitz, M.W. Diversity of Nearctic Dragonflies and Damselflies (Odonata). Diversity 2022, 14, 575. [Google Scholar] [CrossRef]
- Bota-Sierra, C.A.; García-Robledo, C.; Escobar, F.; Novelo-Gutiérrez, R.; Londoño, G.A. Environment, Taxonomy and Morphology Constrain Insect. Thermal Physiology along Tropical Mountains. Funct. Ecol. 2022, 36, 1924–1935. [Google Scholar] [CrossRef]
- Bota-Sierra, C.A.; Flórez-V, C.; Escobar, F.; Sandoval-H, J.; Novelo-Gutiérrez, R.; Londoño, G.A.; Cordero-Rivera, A. The Importance of Tropical Mountain Forests for the Conservation of Dragonfly Biodiversity: A Case from the Colombian Western Andes. Int. J. Odonatol. 2021, 24, 233–247. [Google Scholar] [CrossRef]
- Sternberg, K. Die Postglaziale Besiedlung Mitteleuropas Durch Libellen, Mit Besonderer Berucksichtigung Sudwestdeutschlands (Insecta, Odonata). The Postglacial Colonization of Central Europe by Dragonflies, with Special Reference to Southwestern Germany (Insecta, Odonata). J. Biogeogr. 1998, 25, 319–337. [Google Scholar] [CrossRef]
- Corser, J.D.; White, E.L.; Schlesinger, M.D. Odonata Origins, Biogeography, and Diversification in an Eastern North American Hotspot: Multiple Pathways to High Temperate Forest Insect. Diversity. Insect. Conserv. Divers. 2014, 7, 393–404. [Google Scholar] [CrossRef]
- Heiser, M.; Schmitt, T. Do Different Dispersal Capacities Influence the Biogeography of the Western Palearctic Dragonflies (Odonata)? Biol. J. Linn. Soc. 2010, 99, 177–195. [Google Scholar] [CrossRef]
- Keil, P.; Simova, I.; Hawkins, B.A. Water-Energy and the Geographical Species Richness Pattern of European and North African Dragonflies (Odonata). Insect. Conserv. Divers. 2008, 1, 142–150. [Google Scholar] [CrossRef]
- Bernard, R.; Wildermuth, H. Nehalennia Speciosa (Charpentier, 1840) in Europe: A Case of a Vanishing Relict (Zygoptera: Coenagrionidae). Odonatologica 2005, 34, 335–378. [Google Scholar]
- Ball-Damerow, J.E.; M’Gonigle, L.K.; Resh, V.H. Changes in Occurrence, Richness, and Biological Traits of Dragonflies and Damselflies (Odonata) in California and Nevada over the Past Century. BioDivers. Conserv. 2014, 23, 2107–2126. [Google Scholar] [CrossRef]
- Boudot, J.-P.; Kalkman, V.J.; Azpilicueta Amorin, M.; Bogdanović, T.; Cordero Rivera, A.; Degabriele, G.; Dommanget, J.-L.; Ferreira, S.; Garrigos, B.; Jović, M.; et al. Atlas of the Odonata of the Mediterranean and North Africa. Libellula Suppl. 2009, 9, 1–256. [Google Scholar]
- Aguesse, P. Les Odonates de l’Europe Occidentale, Du Nord de l’Afrique et Des Îles Atlantiques. In Faune de l’Europe et du Bassin Méditerranéen; Masson et Cie: Paris, France, 1968; Volume 4, pp. 1–258. [Google Scholar]
- Pilgrim, E.M.; von Dohlen, C.D. Molecular and Morphological Study of Species-Level Questions within the Dragonfly Genus Sympetrum (Odonata: Libellulidae). Ann. Entomol. Soc. Am. 2007, 100, 688–702. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsen, K.; Svenning, J.-C.; Balslev, H. Niche Breadth Predicts Geographical Range Size and Northern Range Shift in European Dragonfly Species (Odonata). Diversity 2022, 14, 719. https://doi.org/10.3390/d14090719
Olsen K, Svenning J-C, Balslev H. Niche Breadth Predicts Geographical Range Size and Northern Range Shift in European Dragonfly Species (Odonata). Diversity. 2022; 14(9):719. https://doi.org/10.3390/d14090719
Chicago/Turabian StyleOlsen, Kent, Jens-Christian Svenning, and Henrik Balslev. 2022. "Niche Breadth Predicts Geographical Range Size and Northern Range Shift in European Dragonfly Species (Odonata)" Diversity 14, no. 9: 719. https://doi.org/10.3390/d14090719
APA StyleOlsen, K., Svenning, J. -C., & Balslev, H. (2022). Niche Breadth Predicts Geographical Range Size and Northern Range Shift in European Dragonfly Species (Odonata). Diversity, 14(9), 719. https://doi.org/10.3390/d14090719