Machine Learning and Its Applications in Studying the Geographical Distribution of Ants
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Observation Data Analysis
3.2. Observation versus Prediction via ML
4. Discussion
4.1. Distribution of Species Richness in Data-Poor Countries
4.2. Further Improvements to ML Models
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmermann, N.E.; Edwards, T.C., Jr.; Graham, C.H.; Pearman, P.B.; Svenning, J.C. New trends in species distribution modelling. Ecography 2010, 33, 985–989. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Babar, S.; Amarnath, G.; Reddy, C.S.; Jentsch, A.; Sudhakar, S. Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus Lf). Curr. Sci. 2012, 102, 1157–1165. [Google Scholar]
- Macias-Fauria, M.; Johnson, E.A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl. Acad. Sci. USA 2013, 110, 8117–8122. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef]
- Cristóbal-Salas, A.; Santiago-Vicente, B.; Estrada-Contreras, I.; Ibarra-Zavaleta, S. A Parallel Implementation of the Species Distribution Modeling Algorithm. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6. [Google Scholar]
- Pagel, J.; Schurr, F.M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 2012, 21, 293–304. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. A Review of Machine Learning Based Species’ Distribution Modelling. In Proceedings of the 2017 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2–3 December 2017; pp. 199–206. [Google Scholar]
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Shakhovska, N.; Vovk, O.; Hasko, R.; Kryvenchuk, Y. The method of big data processing for distance educational system. In Proceedings of the Conference on Computer Science and Information Technologies, Yerevan, Armenia, 25–29 September 2017; pp. 461–473. [Google Scholar]
- Shakhovska, N.; Kaminskyy, R.; Zasoba, E.; Tsiutsiura, M. Association Rules Mining in Big Data. Int. J. Comput. 2018, 17, 25–32. [Google Scholar] [CrossRef]
- Fedushko, S.; Ustyianovych, T. Predicting pupil’s successfulness factors using machine learning algorithms and mathematical modelling methods. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Toronto, ON, Canada, 19–21 August 2019; pp. 625–636. [Google Scholar]
- Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- Martín, B.; González–Arias, J.; Vicente–Vírseda, J. Machine learning as a successful approach for predicting complex spatio–temporal patterns in animal species abundance. Mach. Learn. 2021, 44, 289–301. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Scheuer, S.; Haase, D. Earth observation based indication for avian species distribution models using the spectral trait concept and machine learning in an urban setting. Ecol. Indic. 2020, 111, 106029. [Google Scholar] [CrossRef]
- Früh, L.; Kampen, H.; Kerkow, A.; Schaub, G.A.; Walther, D.; Wieland, R. Modelling the potential distribution of an invasive mosquito species: Comparative evaluation of four machine learning methods and their combinations. Ecol. Model. 2018, 388, 136–144. [Google Scholar] [CrossRef]
- Ahmad, H. Machine learning applications in oceanography. Aquat. Res. 2019, 2, 161–169. [Google Scholar] [CrossRef]
- Dormann, C.F.; Purschke, O.; Marquez, J.R.G.; Lautenbach, S.; Schroeder, B. Components of uncertainty in species distribution analysis: A case study of the great grey shrike. Ecology 2008, 89, 3371–3386. [Google Scholar] [CrossRef]
- Miller, J. Species distribution modeling. Geogr. Compass 2010, 4, 490–509. [Google Scholar] [CrossRef]
- Hao, J.; Ho, T.K. Machine learning made easy: A review of scikit-learn package in python programming language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Bisong, E. More supervised machine learning techniques with scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: Berlin/Heidelberg, Germany, 2019; pp. 287–308. [Google Scholar]
- Nelli, F. Machine Learning with scikit-learn. In Python Data Analytics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 313–347. [Google Scholar]
- Beery, S.; Cole, E.; Parker, J.; Perona, P.; Winner, K. Species distribution modeling for machine learning practitioners: A review. In Proceedings of the ACM SIGCAS Conference on Computing and Sustainable Societies, New York, NY, USA, 28 June–2 July 2021; pp. 329–348. [Google Scholar]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L.M. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol. Model. 2019, 392, 179–195. [Google Scholar] [CrossRef]
- McGlynn, T.P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 1999, 26, 535–548. [Google Scholar] [CrossRef]
- Borowiec, M.L.; Rabeling, C.; Brady, S.G.; Fisher, B.L.; Schultz, T.R.; Ward, P.S. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenetics Evol. 2019, 134, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Guénard, B.; Weiser, M.D.; Gomez, K.; Narula, N.; Economo, E.P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News/Osterreichische Ges. Fur. Entomofaunist. 2017, 24, 83–89. [Google Scholar]
- Moreau, C.S.; Bell, C.D.; Vila, R.; Archibald, S.B.; Pierce, N.E. Phylogeny of the ants: Diversification in the age of angiosperms. Science 2006, 312, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Tiede, Y.; Schlautmann, J.; Donoso, D.A.; Wallis, C.I.B.; Bendix, J.; Brandl, R.; Farwig, N. Ants as indicators of environmental change and ecosystem processes. Ecol. Indic. 2017, 83, 527–537. [Google Scholar] [CrossRef]
- Parr, C.L.; Bishop, T.R. The response of ants to climate change. Global Chang. Biol. 2022, 28, 3188–3205. [Google Scholar] [CrossRef]
- Huang, H.T.; Yang, P. The ancient cultured citrus ant. BioScience 1987, 37, 665–671. [Google Scholar] [CrossRef]
- Haddad Junior, V.; Cardoso, J.L.C.; Moraes, R.H.P. Description of an injury in a human caused by a false tocandira (Dinoponera gigantea, Perty, 1833) with a revision on folkloric, pharmacological and clinical aspects of the giant ants of the genera Paraponera and Dinoponera (sub-family Ponerinae). Rev. Inst. Med. Trop. São Paulo 2005, 47, 235–238. [Google Scholar] [CrossRef]
- Kass, J.M.; Guénard, B.; Dudley, K.L.; Jenkins, C.N.; Azuma, F.; Fisher, B.L.; Parr, C.L.; Gibb, H.; Longino, J.T.; Ward, P.S. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 2022, 8, eabp9908. [Google Scholar] [CrossRef]
- Corro, E.J.; Ahuatzin, D.A.; Jaimes, A.A.; Favila, M.E.; Ribeiro, M.C.; López-Acosta, J.C.; Dáttilo, W. Forest cover and landscape heterogeneity shape ant–plant co-occurrence networks in human-dominated tropical rainforests. Landsc. Ecol. 2019, 34, 93–104. [Google Scholar] [CrossRef]
- Ahuatzin, D.A.; Corro, E.J.; Jaimes, A.A.; Valenzuela González, J.E.; Feitosa, R.M.; Ribeiro, M.C.; Acosta, J.C.L.; Coates, R.; Dáttilo, W. Forest cover drives leaf litter ant diversity in primary rainforest remnants within human-modified tropical landscapes. Biodivers. Conserv. 2019, 28, 1091–1107. [Google Scholar] [CrossRef]
- Purcell, J.; Avilés, L. Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: Insights from a transplant experiment. Proc. R. Soc. B Biol. Sci. 2008, 275, 2617–2625. [Google Scholar] [CrossRef] [PubMed]
- Stringer, L.D.; Haywood, J.; Lester, P.J. The influence of temperature and fine-scale resource distribution on resource sharing and domination in an ant community. Ecol. Entomol. 2007, 32, 732–740. [Google Scholar] [CrossRef]
- Wahlqvist, M.L.; Specht, R.L. Food variety and biodiversity: Econutrition. Asia Pac. J. Clin. Nutr. 1998, 7, 314–319. [Google Scholar]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 2004, 19, 209–216. [Google Scholar] [CrossRef]
- Jackson, D.A. Ant distribution patterns in a Cameroonian cocoa plantation: Investigation of the ant mosaic hypothesis. Oecologia 1984, 62, 318–324. [Google Scholar] [CrossRef]
- Carter, W.G. Ant distribution in North Carolina. J. Elisha Mitchell Sci. Soc. 1962, 78, 150–204. [Google Scholar]
- Torres, J.A. Diversity and distribution of ant communities in Puerto Rico. Biotropica 1984, 16, 296–303. [Google Scholar] [CrossRef]
- Miravete, V.; Roura-Pascual, N.; Dunn, R.R.; Gómez, C. How many and which ant species are being accidentally moved around the world? Biol. Lett. 2014, 10, 20140518. [Google Scholar] [CrossRef]
- Gibb, H.; Dunn, R.R.; Sanders, N.J.; Grossman, B.F.; Photakis, M.; Abril, S.; Agosti, D.; Andersen, A.N.; Angulo, E.; Armbrecht, I. A global database of ant species abundances. Ecology 2017, 98, 883–884. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 2011, 34, 232–243. [Google Scholar] [CrossRef]
- Johnson, V.M.; Rogers, L.L. Accuracy of neural network approximators in simulation-optimization. J. Water Resour. Plan. Manag. 2000, 126, 48–56. [Google Scholar] [CrossRef]
- Nokeri, T.C. Solving Economic Problems Applying Artificial Neural Networks. In Econometrics and Data Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 161–188. [Google Scholar]
- Beinrohr, L.; Kail, E.; Piros, P.; Tóth, E.; Fleiner, R.; Kolev, K. Anatomy of a Data Science Software Toolkit That Uses Machine Learning to Aid ‘Bench-to-Bedside’Medical Research—With Essential Concepts of Data Mining and Analysis Explained. Appl. Sci. 2021, 11, 12135. [Google Scholar] [CrossRef]
- Khansari, S.M.; Arbabi, F.; Moazen Jamshidi, M.H.; Soleimani, M.; Ebrahimi, P. Health Services and Patient Satisfaction in IRAN during the COVID-19 Pandemic: A Methodology Based on Analytic Hierarchy Process and Artificial Neural Network. J. Risk Financ. Manag. 2022, 15, 288. [Google Scholar] [CrossRef]
- Urbani, B.; Andrade, D. AntWiki. The Ants—Online. Available online: https://www.antwiki.org/wiki/Downloadable_Data (accessed on 1 May 2022).
- Cerasoli, F.; D’Alessandro, P.; Biondi, M. Worldclim 2.1 versus Worldclim 1.4: Climatic niche and grid resolution affect between-version mismatches in Habitat Suitability Models predictions across Europe. Ecol. Evol. 2022, 12, e8430. [Google Scholar] [CrossRef]
- WorldClim. WorldClim Database; WorldClim-Global Climate Data: Berkeley, CA, USA, 2022; Available online: https://www.worldclim.org/data/index.html (accessed on 1 May 2022).
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Available online: https://www.climate.gov/ (accessed on 1 May 2022).
- World Bank. World Bank Database; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Schneider, U.; Fuchs, T.; Meyer-Christoffer, A.; Rudolf, B. Global precipitation analysis products of the GPCC. Glob. Precip. Climatol. Cent. GPCC DWD Internet Publ. 2008, 1, 1–112. [Google Scholar]
- International Monetary Fund. International Monetary Fund Database; International Monetary Fund: Bretton Woods, NH, USA, 2022. [Google Scholar]
- United Nations Development Programme. Human Development Index; United Nations Development Programme: New York, NY, USA, 2022. [Google Scholar]
- Indriani, D.; Nasution, A.H.; Monika, W.; Nasution, S. Towards a Sentiment Analyser for Low-resource Languages. In Proceedings of the International Conference on Smart Computing and Cyber Security, Gangwon-do, Korea, 7–8 July 2020; pp. 109–118. [Google Scholar]
- Yasenko, L.; Klyatchenko, Y.; Tarasenko-Klyatchenko, O. Image noise reduction by denoising autoencoder. In Proceedings of the 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 14–18 May 2020; pp. 351–355. [Google Scholar]
- Kadiyala, A.; Kumar, A. Applications of python to evaluate the performance of decision tree-based boosting algorithms. Environ. Prog. Sustain. Energy 2018, 37, 618–623. [Google Scholar] [CrossRef]
- Noviyarto, H. Comparation Logistic Regression and Decision Tree Method to Distribution Type of Works in Jakarta. Int. J. Multidiscip. Res. Publ. 2020, 2, 26–29. [Google Scholar]
- Polimis, K.; Rokem, A.; Hazelton, B. Confidence intervals for random forests in python. J. Open Source Softw. 2017, 2, 124. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Guo, K.; Han, S.; Yao, S.; Wang, Y.; Xie, Y.; Yang, H. Software-hardware codesign for efficient neural network acceleration. IEEE Micro 2017, 37, 18–25. [Google Scholar] [CrossRef]
- Chellapilla, K.; Puri, S.; Simard, P. High performance convolutional neural networks for document processing. HAL Open Sci. 2006, 1, 1–10. Available online: https://hal.inria.fr/inria-00112631/document (accessed on 1 May 2022).
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Zhao, D.-M.; Jiao, Y.-M.; Wang, J.-L.; Ding, Y.-P.; Liu, Z.-L.; Liu, C.-J.; Qiu, Y.-M.; Zhang, J.; Xu, Q.-E.; Wu, C.-R. Comparative performance assessment of landslide susceptibility models with presence-only, presence-absence, and pseudo-absence data. J. Mt. Sci. 2020, 17, 2961–2981. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Maris, V.; Huneman, P.; Coreau, A.; Kéfi, S.; Pradel, R.; Devictor, V. Prediction in ecology: Promises, obstacles and clarifications. Oikos 2018, 127, 171–183. [Google Scholar] [CrossRef]
- Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.-Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, J.T. Considerations of scale in biodiversity conservation. Anim. Conserv. 2010, 13, 229–236. [Google Scholar] [CrossRef]
- Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 2019, 69, 140–150. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Samworth, R.J. Optimal weighted nearest neighbour classifiers. Ann. Stat. 2012, 40, 2733–2763. [Google Scholar] [CrossRef]
- Duivesteijn, W.; Feelders, A. Nearest neighbour classification with monotonicity constraints. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, 15–19 September 2008; pp. 301–316. [Google Scholar]
- Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–280. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 27–33. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Li, X. Efficiency analysis of machine learning intelligent investment based on K-means algorithm. IEEE Access 2020, 8, 147463–147470. [Google Scholar] [CrossRef]
- Manogaran, G.; Vijayakumar, V.; Varatharajan, R.; Malarvizhi Kumar, P.; Sundarasekar, R.; Hsu, C.-H. Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering. Wirel. Pers. Commun. 2018, 102, 2099–2116. [Google Scholar] [CrossRef]
- Mohr, F.; Wever, M.; Hüllermeier, E. ML-Plan: Automated machine learning via hierarchical planning. Mach. Learn. 2018, 107, 1495–1515. [Google Scholar] [CrossRef] [Green Version]
SDM | ML Modelling | Reference | |
---|---|---|---|
Rational | Using computer algorithms to predict the distribution of a species across geographic space based on the environmental data | Using ML algorithms to predict the distribution of species richness | [9,20] |
Methods | A correlation model (the link between location data and distribution of species richness), a process model (the link between functional traits of organisms and their environment), and a hybrid model | Predictions based on “black box” models and a complex data matrix | [3,4,5,21,22,23,24] |
Determinants of accuracy | The accuracy of existing links and assumptions | Quality and quantity of data | [3,4,5,21,22,23,24] |
Advantages | A matured method that can perform the predictions | Constructing a model structure conveniently and quickly | [9,25] |
Limitations | Sample selection bias; selection of scale affects prediction resulting in presence-only data | The “black swan” causing prediction problems in ML | [9,25,26] |
Method | Classifier | Training Accuracy | Testing Accuracy |
---|---|---|---|
Decision tree | DecisionTreeClassifier | 73.86% | 71.78% |
Random forest | RandomForestClassifier | 73.86% | 70.62% |
Logistic regression | LogisticRegression | 72.92% | 71.09% |
Neural network | MLPClassifier | 75.77% | 75.18% |
“Uncertain” in Prediction Score: 0 | “Introduced” in Prediction Score: 1 | “Likely” in Prediction Score: 2 | “Present” in Prediction Score: 3 | Total | |
---|---|---|---|---|---|
“Uncertain” in observation | 6180 | 458 | 357 | 2462 | 9457 |
“Introduced” in observation | 161 | 33 | 46 | 490 | 730 |
“Likely” in observation | 708 | 60 | 1192 | 849 | 2809 |
“Present” in observation | 1942 | 689 | 132 | 17,896 | 20,659 |
Total | 8991 | 1240 | 1727 | 21,697 | 33,655 |
Country | Region | Observed Index | Predicted Index | Difference |
---|---|---|---|---|
Mauritania | West Africa | 0.129 | 0.489 | 0.360 |
Niger | West Africa | 0.246 | 0.392 | 0.146 |
Burkina Faso | West Africa | 0.273 | 0.558 | 0.285 |
Mali | West Africa | 0.276 | 0.498 | 0.222 |
Guinea-Bissau | West Africa | 0.337 | 0.584 | 0.247 |
Sao Tome and Principe | Central Africa | 0.263 | 0.695 | 0.432 |
Chad | Central Africa | 0.264 | 0.488 | 0.224 |
Kuwait | West Asia | 0.179 | 0.631 | 0.452 |
Jordan | West Asia | 0.302 | 0.556 | 0.254 |
Bhutan | South Asia | 0.264 | 0.706 | 0.442 |
Chile | South America | 0.190 | 0.513 | 0.323 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Ding, Y. Machine Learning and Its Applications in Studying the Geographical Distribution of Ants. Diversity 2022, 14, 706. https://doi.org/10.3390/d14090706
Chen S, Ding Y. Machine Learning and Its Applications in Studying the Geographical Distribution of Ants. Diversity. 2022; 14(9):706. https://doi.org/10.3390/d14090706
Chicago/Turabian StyleChen, Shan, and Yuanzhao Ding. 2022. "Machine Learning and Its Applications in Studying the Geographical Distribution of Ants" Diversity 14, no. 9: 706. https://doi.org/10.3390/d14090706
APA StyleChen, S., & Ding, Y. (2022). Machine Learning and Its Applications in Studying the Geographical Distribution of Ants. Diversity, 14(9), 706. https://doi.org/10.3390/d14090706