Effects of Flood on Phytoplankton Diversity and Community Structure in Floodplain Lakes Connected to the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Data Analyses
3. Results
3.1. Environmental Characteristics Parameters
3.2. Phytoplankton Composition and Biomass
3.3. Correlations between Phytoplankton Community Composition and Environmental Variables
4. Discussion
4.1. Floods Drive Changes in Huayanghe Lakes
4.2. The Influence of Flood Events on Phytoplankton Diversity and Community Structure
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godlewska, M.; Mazurkiewicz-Boroń, G.; Pociecha, A. Effects of flood on the functioning of the Dobczyce reservoir ecosystem. Hydrobiologia 2003, 504, 305–313. [Google Scholar] [CrossRef]
- Sokal, M.A.; Hall, R.I.; Wolfe, B.B. The role of flooding on inter-annual and seasonal variability of lake water chemistry, phytoplankton diatom communities and macrophyte biomass in the Slave River Delta (Northwest Territories, Canada). Ecohydrology 2010, 3, 41–54. [Google Scholar] [CrossRef]
- Thomaz, S.M.; Bini, L.M.; Bozelli, R.L. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 2007, 579, 1–13. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, S.; Li, Y.; Yin, W.; Qi, P.; Shi, J.; Hu, L.; Li, B.; Bi, S.; Zhu, J. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Padisák, J.; Hajnal, V.; Naselli-Flores, L.; Dokulil, M.T.; Nges, P.; Zohary, T. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 2010, 639, 205–220. [Google Scholar] [CrossRef]
- Sun, X.; Wang, W. The impact of environmental parameters on phytoplankton functional groups in northeastern China. Ecol. Eng. 2021, 164, 106209. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, W.Y. The statistical characteristics and the nowcasting of intense precipitation in Anqing area. Sci. Meteorol. Sinica 1991, 11, 414–420. [Google Scholar]
- State Environmental Protection Bureau (SEPB). Methods of Monitoring and Analysis for Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Hu, E.; Georgieva, L.; Senichkina, L.; Kideys, A.E. Phytoplankton distribution in the western and eastern Black Sea in spring and autumn. Mar. Sci. 1999, 56, 15–22. [Google Scholar]
- Tornés, E.; Pérez, M.C.; Durán, C.; Sabater, S. Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river. Sci. Total Environ. 2014, 475, 225–233. [Google Scholar] [CrossRef]
- Li, J.Y.; Qi, Y.Z. Chinese Freshwater Algae (XIV); Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Hu, H.J.; Wei, Y.X. The Freshwater Algae of China: Systematics, Taxonomy and Ecology; Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Pielou, E.C. An Introduction to Mathematical Ecology; Wiley-Interscience, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Gomes, P.I.; Asaeda, T. Spatial and temporal heterogeneity of Eragrostis curvula in the downstream flood meadow of a regulated river. Ann. Limnol. 2009, 45, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, C.; Deng, D.G.; Zhao, X.X.; Zhou, Z.Z. Temporal and spatial variations in phytoplankton: Correlations with environmental factors in Shengjin Lake China. Environ. Sci. Poll. Res. 2015, 22, 14144–14156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.B.; Liu, J.J.; Chen, J.F.; Chen, Q.Z.; Yan, X.J.; Xuan, J.L.; Zeng, J.N. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 2014, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Simões, N.R.; Lansac-Tôha, F.A.; Velho, L.F.; Bonecker, C.C. Intra and inter-annual structure of zooplankton communities in floodplain lakes: A long-term ecological research study. Rev. Biol. Trop. 2012, 60, 1819–1836. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, X.; Gu, P.; Wang, N.; Zheng, Z. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta. Environ. Sci. Pollut. Res. 2020, 27, 12550–12565. [Google Scholar]
- B-Beres, V.; Lukacs, A.; Toeroek, P.; Kokai, Z.; Novak, Z.; T-Krasznai, E.; Tothmeresz, B.; Bacsi, I. Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecol. Indic. 2016, 64, 31–38. [Google Scholar] [CrossRef]
- Punnarak, P.; Sojisuporn, P.; Jitrapat, H.; Piumsomboon, A. Effect of Flood Disaster and Long Term Changes during 2011 to 2018 on Community Structure of Zooplankton in the Inner Gulf of Thailand. Int. J. Environ. Sci. Dev. 2020, 11, 383–389. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Barone, R. Phytoplankton dynamics and structure: A comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 2000, 438, 65–74. [Google Scholar] [CrossRef]
- Brookes, J.D.; Ganf, G.G. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J. Plankton Res. 2001, 12, 1399–1411. [Google Scholar] [CrossRef]
- Offem, B.O.; Samsons, Y.A.; Omoniyi, I.T.; Ikpi, G.U. Dynamics of the limnological features and diversity of zooplankton populations of the Cross River System SE Nigeria. Knowl. Manag. Aquat. Ecosyst. 2009, 393, 1–19. [Google Scholar] [CrossRef]
- Smyly, W.J.P. Some effects of enclosure on the zooplankton in a small lake. Freshw. Biol. 1976, 6, 241–251. [Google Scholar] [CrossRef]
- Wu, Q.L. Effects of Water Level Fluctuation on Phytoplankton in Huayang River Lake Group; Anhui University: Anhui, China, 2018. [Google Scholar]
- Lan, W.; Cai, Q.; Xu, Y.; Kong, L.; Tan, L.; Zhang, M. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquat. Ecol. 2011, 45, 197–212. [Google Scholar]
- Nafi’u, S.A.; Ibrahim, S. Seasonal dynamics of zooplankton composition and abundance in Tomas Dam Dambatta, Kano, Nigeria. Bayero J. Pure Appl. Sci. 2017, 10, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Beaver, J.R.; Jensen, D.E.; Casamatta, D.A.; Tausz, C.E.; Scotese, K.C.; Buccier, K.M.; Teacher, C.E.; Rosati, T.C.; Minerovic, A.D.; Renicker, T.R. Response of phytoplankton and zooplankton communities in six reservoirs of the middle missouri river (USA) to drought conditions and a major flood event. Hydrobiologia 2013, 705, 173–189. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, J.; Ou, T.; Han, M.S.; Wang, J.F.; Chen, J.G.; Li, Y.L.; Salmaso, N. Impact of water level fluctuations on the development of phytoplankton in a large subtropical reservoir: Implications for the management of cyanobacteria. Environ. Sci. Pollut. Res. 2017, 25, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Liu, K.; Chiang, K.; Hsiung, T.; Chang, J.; Chen, C.; Hung, C.; Chou, W.; Chung, C.; Chen, H. Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geophys. Res. Lett. 2011, 38, L13603. [Google Scholar] [CrossRef] [Green Version]
Axes | 1 | 2 | 3 | 4 | Total Variance |
---|---|---|---|---|---|
Eigenvalues | 0.433 | 0.034 | 0.0737 | 0.0479 | 1 |
Species–environment correlations | 0.9777 | 0.8479 | 0.7175 | 0.7201 | |
Cumulative percentage variance of species data | 34.89 | 46.35 | |||
Cumulative percentage variance of species–environment relationship | 54.16 | 71.95 | |||
Sum of all eigenvalues | 1 |
Axes | 1 | 2 | 3 | 4 | Total Variance |
---|---|---|---|---|---|
Eigenvalues | 0.573 | 0.069 | 0.048 | 0.03 | 1 |
Species–environment correlations | 0.812 | 0.747 | 0.615 | 0.708 | |
Cumulative percentage variance of species data | 53.72 | 58.51 | |||
Cumulative percentage variance of species–environment relationship | 83.39 | 90.82 | |||
Sum of all eigenvalues | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fan, Z.; Wang, W.; Zhou, Z.; Ye, X. Effects of Flood on Phytoplankton Diversity and Community Structure in Floodplain Lakes Connected to the Yangtze River. Diversity 2022, 14, 581. https://doi.org/10.3390/d14070581
Wang Y, Fan Z, Wang W, Zhou Z, Ye X. Effects of Flood on Phytoplankton Diversity and Community Structure in Floodplain Lakes Connected to the Yangtze River. Diversity. 2022; 14(7):581. https://doi.org/10.3390/d14070581
Chicago/Turabian StyleWang, Yutao, Zhongya Fan, Wencai Wang, Zhongze Zhou, and Xiaoxin Ye. 2022. "Effects of Flood on Phytoplankton Diversity and Community Structure in Floodplain Lakes Connected to the Yangtze River" Diversity 14, no. 7: 581. https://doi.org/10.3390/d14070581
APA StyleWang, Y., Fan, Z., Wang, W., Zhou, Z., & Ye, X. (2022). Effects of Flood on Phytoplankton Diversity and Community Structure in Floodplain Lakes Connected to the Yangtze River. Diversity, 14(7), 581. https://doi.org/10.3390/d14070581