DNA Barcoding of the Market Samples of Single-Drug Herbal Powders Reveals Adulteration with Taxonomically Unrelated Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Single-Drug Herbal Powders
2.2. Genomic DNA Extraction, PCR Amplification, and DNA Sequencing
2.3. Reference DNA Barcode Library
2.4. Data Analysis and Species Authentication
3. Results and Discussion
3.1. DNA Isolation, PCR, and Sequencing
3.2. Non-Authentic Mixed Samples
3.3. Non-Authentic Samples with Complete Substitution
3.4. Identification of the Adulterant Species in Non-Authentic Samples
3.5. Authentication of Tulsi (Ocimum tenuiflorum)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravikumar, K.; Begum, S.N.; Ved, D.K.; Bhatt, J.R.; Goraya, G.S. Compendium of Traded Medicinal Plants; Foundation for Revitalization of Local Health Traditions (FRLHT): Bengaluru, India, 2018; pp. 1–338. [Google Scholar]
- World Health Organization. Programme on Traditional Medicine. In WHO Traditional Medicine Strategy 2002–2005; World Health Organization: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/67163 (accessed on 12 February 2022).
- Meena, A.K.; Bansal, P.; Kumar, S. Plants-herbal wealth as a potential source of ayurvedic drugs. Asian J. Tradit. Med. 2009, 4, 152–170. [Google Scholar]
- Newmaster, S.G.; Grguric, M.; Shanmughanandhan, D.; Ramalingam, S.; Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013, 11, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmler, C.; Graham, J.G.; Chen, S.N.; Pauli, G.F. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018, 129, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Marichamy, K.; Kumar, N.Y.; Ganesan, A. Sustainable development in exports of herbals and Ayurveda, Siddha, Unani and Homeopathy (Ayush) in India. Sci. Park Res. J. 2014, 27, 1–6. [Google Scholar]
- Parveen, A.; Adams, J.S.; Budel, J.M.; Zhao, J.; Babu, G.N.M.; Ali, Z.; Khan, I.A. Comparative morpho-anatomical and HPTLC profiling of Tinospora species and dietary supplements. Planta Med. 2020, 86, 470–481. [Google Scholar] [CrossRef]
- Martinez-Frances, V.; Hahn, E.; Rios, S.; Rivera, D.; Rreich, E.; Vila, R.; Canigueral, S. Ethnopharmacological and chemical characterization of Salvia species used in Valencian traditional herbal preparations. Front. Pharmacol. 2017, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Jiang, G.; Huang, L.; Chen, C.; Sun, J.; Zhu, C. DNA barcoding coupled with high-resolution melting analysis for nut species and walnut milk beverage authentication. J. Sci. Food Agric. 2020, 100, 2372–2379. [Google Scholar] [CrossRef]
- Han, J.; Pang, X.; Liao, B.; Yao, H.; Song, J.; Chen, S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci. Rep. 2016, 6, 18723. [Google Scholar] [CrossRef]
- Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, L.C.; Xu, H. Chemical markers for the quality control of herbal medicines: An overview. Chin. Med. 2008, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Nithaniyal, S.; Vassou, S.L.; Poovitha, S.; Raju, B.; Parani, M. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding. Genome 2017, 60, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Pandit, R.; Travadi, T.; Sharma, S.; Joshi, C.; Joshi, M. DNA meta-barcoding using rbcL based mini-barcode revealed presence of unspecified plant species in Ayurvedic polyherbal formulations. Phytochem. Anal. 2021, 32, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Gill, B.A.; Musili, P.M.; Kurukura, S.; Hassan, A.A.; Goheen, J.R.; Kress, W.J.; Kuzmina, M.; Pringle, R.M.; Kartzinel, T.R. Plant DNA barcode library and community phylogeny for a semi-arid East African savanna. Mol. Ecol. Resour. 2019, 19, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Slipiko, M.; Myszczynski, K.; Buczkowska, K.; Baczkiewicz, A.; Szczecinska, M.; Sawicki, J. Molecular delimitation of European leafy liverworts of the genus Calypogeia based on plastid super-barcodes. BMC Plant Biol. 2022, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Nitta, J.H.; Chambers, S.M. Identifying cryptic fern gametophytes using DNA barcoding: A review. Appl. Plant Sci. 2022, 10, e11465. [Google Scholar] [CrossRef] [PubMed]
- Kool, A.; de Boer, H.J.; Kruger, A.; Rydberg, A.; Abbad, A.; Bjork, L.; Martin, G. Molecular identification of commercialized medicinal plants in southern Morocco. PLoS ONE 2012, 7, e39459. [Google Scholar] [CrossRef]
- Vassou, S.L.; Nithaniyal, S.; Raju, B.; Parani, M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. BMC Complement. Altern. Med. 2016, 16 (Suppl. 1), 186. [Google Scholar] [CrossRef] [Green Version]
- Shanmughanandhan, D.; Ragupathy, S.; Newmaster, S.G.; Mohanasundaram, S.; Sathishkumar, R. Estimating Herbal Product Authentication and Adulteration in India Using a Vouchered, DNA-Based Biological Reference Material Library. Drug Saf. 2016, 39, 1211–1227. [Google Scholar] [CrossRef]
- Urumarudappa, S.K.J.; Tungphatthong, C.; Sukrong, S. Mitigating the Impact of Admixtures in Thai Herbal Products. Front. Pharmacol. 2019, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Senapati, A.; Basak, S.; Rangan, L. A Review on Application of DNA Barcoding Technology for Rapid Molecular Diagnostics of Adulterants in Herbal Medicine. Drug Saf. 2022, 45, 193–213. [Google Scholar] [CrossRef]
- Amritha, N.; Bhooma, V.; Parani, M. Authentication of the market samples of Ashwagandha by DNA barcoding reveals that powders are significantly more adulterated than roots. J. Ethnopharmacol. 2020, 256, 112725. [Google Scholar] [CrossRef]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 1990; Part 1; Volume I. [Google Scholar]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 1999; Part 1; Volume II. [Google Scholar]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2001; Part 1; Volume III. [Google Scholar]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2004; Part 1; Volume IV. [Google Scholar]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2006; Part 1; Volume V. [Google Scholar]
- Department of AYUSH, Ministry of health and Family Welfare, Government of India. The Ayurvedic Pharmacopoeia of India, 1st ed.; Department of AYUSH, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2008; Part 1; Volume VI. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987, 19, 11–15. [Google Scholar]
- Poovitha, S.; Stalin, N.; Balaji, R.; Parani, M. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L. Genome 2016, 59, 1150–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassou, S.L.; Kusuma, G.; Parani, M. DNA barcoding for species identification from dried and powdered plant parts: A case study with authentication of the raw drug market samples of Sida cordifolia. Gene 2015, 559, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.A.; Wagner, W.L.; Hoch, P.C.; Nepokroeff, M.; Pires, J.C.; Zimmer, E.A.; Sytsma, K.J. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 2003, 90, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Fazekas, A.J.; Burgess, K.S.; Kesanakurti, P.R.; Graham, S.W.; Newmaster, S.G.; Husband, B.C.; Percy, D.M.; Hajibabaei, M.; Barrett, S.C. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 2008, 3, e2802. [Google Scholar] [CrossRef] [Green Version]
- Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef]
- Purushothaman, N.; Newmaster, S.G.; Ragupathy, S.; Stalin, N.; Suresh, D.; Arunraj, D.R.; Gnanasekaran, G.; Vassou, S.L.; Narasimhan, D.; Parani, M. A tiered barcode authentication tool to differentiate medicinal Cassia species in India. Genet Mol. Res. 2014, 13, 2959–2968. [Google Scholar] [CrossRef]
- Nithaniyal, S.; Parani, M. Evaluation of chloroplast and nuclear DNA barcodes for species identification in Terminalia L. Biochem. Syst. Ecol. 2016, 68, 223–229. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, V.A.; Swetha, V.P.; Sheeja, T.E.; Leela, N.K.; Chempakam, B.; Sasikumar, B. DNA Barcoding to Detect Chilli Adulteration in Traded Black Pepper Powder. Food Biotechnol. 2014, 28, 25–40. [Google Scholar] [CrossRef]
- Zoschke, R.; Liere, K.; Börner, T. From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J. 2007, 50, 710–722. [Google Scholar] [CrossRef]
- Seethapathy, G.S.; Raclariu-Manolica, A.C.; Anmarkrud, J.A.; Wangensteen, H.; de Boer, H.J. DNA Metabarcoding Authentication of Ayurvedic Herbal Products on the European Market Raises Concerns of Quality and Fidelity. Front. Plant Sci. 2019, 10, 68. [Google Scholar]
- Urumarudappa, S.K.J.; Tungphatthong, C.; Prombutara, P.; Sukrong, S. DNA metabarcoding to unravel plant species composition in selected herbal medicines on the National List of Essential Medicines (NLEM) of Thailand. Sci. Rep. 2020, 10, 18259. [Google Scholar] [CrossRef]
- Bhooma, V.; Parani, M. DNA barcoding after cloning identifies taxonomically diverse botanical adulterants in the market samples of saffron. Res. J. Biotechnol. 2018, 13, 29–33. [Google Scholar]
- Srirama, R.; Senthilkumar, U.; Sreejayan, N.; Ravikanth, G.; Gurumurthy, B.R.; Shivanna, M.B.; Sanjappa, M.; Ganeshiah, K.N.; Shaanker, U.R. Assessing species admixtures in raw drug trade of Phyllanthus, a hepato- protective plant using molecular tools. J. Ethnopharmacol. 2010, 130, 208–215. [Google Scholar] [CrossRef]
- Kumar, S.J.U.; Krishna, V.; Seethapathy, G.S.; Senthilkumar, U.; Ragupathy, S.; Ganeshaiah, K.N.; Ganesan, R.; Newmaster, S.; Ravikanth, G.; Shaanker, R.U. DNA barcoding to assess species adulteration in raw drug trade of “Bala” (genus: Sida L.) herbal products in South India. Biochem. Syst. Ecol. 2015, 61, 501–509. [Google Scholar] [CrossRef]
- Rana, A.C. Plumbao zeylanica: A phytopharmacological review. IJPSR 2011, 2, 247–255. [Google Scholar]
- Shankar, R.; Rawat, M.S. Medicinal plants used in traditional medicine in lohit and Dibang valley districts of Arunachal Pradesh. IJTK 2008, 7, 288–295. [Google Scholar]
- Nelluri, N.R.; Kumar, P.; Agarwal, N.K.; Gouda, T.S.; Setty, S.R. Phytochemical and pharmacological evaluation of leaves of Abutilon indicum. IJTK 2003, 2, 79–83. [Google Scholar]
- Sivarajan, V.V.; Balachandran, I. Ayurvedic Drugs and Their Plant Sources; Oxford and IBH Publishing Cooperation Private Limited: New Delhi, India, 1994; p. 71. [Google Scholar]
- Bose, S.; Nag, S. Isolation of natural dyes from the flower of Hibiscus rosa-sinensis. Am. J. PharmTech Res. 2012, 2, 761–770. [Google Scholar]
- Nartunai, G.; Susikumar, S.; Narayanan, K.; Ilavarasan, R. Macro-Microscopic Identification of Dried Flowers of Hibiscus rosa-sinensis L. and its Differentiation from Rhododendron arboreum Arboreum Sm. Pharmacog. J. 2019, 11, 613–616. [Google Scholar]
- Kesari, A.N.; Gupta, R.K.; Singh, S.K.; Diwakar, S.; Watal, G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J. Ethnopharmacol. 2006, 107, 374–379. [Google Scholar] [CrossRef]
- Singh, S.K.; Rai, P.K.; Jaiswal, D.; Watal, G. Evidence-based Critical Evaluation of Glycemic Potential of Cynodon dactylon. Evid. Based Complementary Altern. Med. 2008, 5, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Nille, G.C.; Mishra, S.K.; Chaudhary, A.K.; Reddy, K.R.C. Ethnopharmacological, Phytochemical, Pharmacological, and Toxicological Review on Senna auriculata (L.) Roxb.: A Special Insight to Antidiabetic Property. Front. Pharmacol. 2021, 12, 647887. [Google Scholar] [CrossRef]
- Chhatre, S.; Nesari, T.; Somani, G.; Kanchan, D.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Phcog. Rev. 2014, 8, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Mowa, E.; Maas, E. Influence of resting period on fruits and secondary tubers of Harpagophytum procumbens in Namibia. ISTJN 2016, 8, 73–90. [Google Scholar]
- Mundy, P.J.; Ncube, S.F. Devil’s claw-A natural substitute for diclofenac? Vulture News 2014, 67, 43–47. [Google Scholar] [CrossRef]
- Marshall, N.T. Searching for a Cure: Conservation of Medicinal Wildlife Resources in East and Southern Africa; TRAFFIC-International: Cambridge, UK, 1998. [Google Scholar]
- Hebbar, S.S.; Harsha, V.H.; Shripathi, V.; Hegde, G.R. Ethnomedicine of Dharwad district in Karnataka, India-plants used in oral health care. J. Ethnopharmacol. 2004, 94, 261–266. [Google Scholar] [CrossRef]
- Nadkarni, K.M. Indian Materia Medica; reprinted; Bombay Popular Prakashan: Mumbai, India, 2009; Volume 1. [Google Scholar]
- Christina, V.L.; Annamalai, A. Nucleotide based validation of Ocimum species by evaluating three candidate barcodes of the chloroplast region. Mol. Ecol. Resour. 2014, 14, 60–68. [Google Scholar] [CrossRef]
- Jürges, G.; Sahi, V.; Rodriguez, D.R.; Reich, E.; Bhamra, S.; Howard, C.; Slater, A.; Nick, P. Product authenticity versus globalisation-The Tulsi case. PLoS ONE 2018, 13, e0207763. [Google Scholar] [CrossRef]
- Varadharajan, B.; Parani, M. DMSO and betaine significantly enhance the PCR amplification of ITS2 DNA barcodes from plants. Genome 2021, 64, 165–171. [Google Scholar] [CrossRef]
S. No | Collection ID | Species Expected as per the Label | Family | Order | Species Identified by DNA Barcoding | Family | Order |
---|---|---|---|---|---|---|---|
1 | HRD031 | Abutilon indicum | Malvaceae | Malvales | Sida cordifolia | Malvaceae | Malvales |
2 | HRD050 | Alpinia galanga | Zingiberaceae | Zingiberales | Indigofera stachyodes | Fabaceae | Fabales |
3 | HRD017 | Cardiospermum halicacabum | Sapindaceae | Sapindales | Trigonella foenum-graecum | Fabaceae | Fabales |
4 | HRD004 | Centella asiatica | Apiaceae | Apiales | Ipomea imperati | Convolvulaceae | Solanales |
5 | HRD130 | Centella asiatica | Apiaceae | Apiales | Trigonella foenum-graecum | Fabaceae | Fabales |
6 | HRD103 | Coscinium fenestratum | Menispermaceae | Ranunculales | Vigna mungo | Fabaceae | Fabales |
7 | HRD084 | Curcuma aromatica | Zingiberaceae | Zingiberales | Cullen corylifolium | Fabaceae | Fabales |
8 | HRD038 | Cynodon dactylon | Poaceae | Poales | Sporobolus helvolus | Poaceae | Poales |
9 | HRD054 | Cynodon dactylon | Poaceae | Poales | Sporobolus helvolus | Poaceae | Poales |
10 | HRD107 | Cynodon dactylon | Poaceae | Poales | Sporobolus helvolus | Poaceae | Poales |
11 | HRD093 | Ficus benghalensis | Moraceae | Rosales | Thespesia populnea | Malvaceae | Malvales |
12 | HRD085 | Ficus racemosa | Moraceae | Rosales | Abutilon indicum | Malvaceae | Malvales |
13 | HRD138 | Ficus racemosa | Moraceae | Rosales | Abutilon grandiflorum | Malvaceae | Malvales |
14 | HRD078 | Ficus religiosa | Moraceae | Rosales | Indigofera tinctoria | Fabaceae | Fabales |
15 | HRD052 | Glycyrrhiza glabra | Fabaceae | Fabales | Canavalia sp. | Fabaceae | Fabales |
16 | HRD039 | Gymnema sylvestre | Apocynaceae | Gentianales | Trigonella foenum-graecum | Fabaceae | Fabales |
17 | HRD068 | Hibiscus rosa-sinensis | Malvaceae | Malvales | Rhododendron sp. | Ericaceae | Ericales |
18 | HRD108 | Hibiscus rosa-sinensis | Malvaceae | Malvales | Rhododendron sp. | Ericaceae | Ericales |
19 | HRD110 | Hibiscus rosa-sinensis | Malvaceae | Malvales | Rhododendron sp. | Ericaceae | Ericales |
20 | HRD127 | Hybanthus enneaspermus | Violaceae | Malpighiales | Cardiospermum halicacabum | Sapindaceae | Sapindales |
21 | HRD040 | Mangifera indica | Anacardiaceae | Sapindales | Mollugo cerviana | Molluginaceae | Caryophyllales |
22 | HRD016 | Melia azedarach | Meliaceae | Sapindales | Justicia adhatoda | Acanthaceae | Lamiales |
23 | HRD081 | Moringa oleifera | Moringaceae | Brassicales | Cassia senna | Fabaceae | Fabales |
24 | HRD095 | Mukia maderaspatana | Cucurbitaceae | Cucurbitales | Cucumis melo | Cucurbitaceae | Cucurbitales |
25 | HRD079 | Pavonia zeylanica | Malvaceae | Malvales | Sida acuta | Malvaceae | Malvales |
26 | HRD019 | Senna auriculata | Fabaceae | Fabales | Indigofera tinctoria | Fabaceae | Fabales |
27 | HRD099 | Terminalia arjuna | Combretaceae | Myrtales | Mucuna pruriens | Fabaceae | Fabales |
28 | HRD098 | Tribulus terrestris | Zygophyllaceae | Zygophyllales | Harpagophytum sp. | Ericaceae | Ericales |
29 | HRD126 | Zingiber officinale | Zingiberaceae | Zingiberales | Cajanus cajan | Fabaceae | Fabales |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaji, R.; Parani, M. DNA Barcoding of the Market Samples of Single-Drug Herbal Powders Reveals Adulteration with Taxonomically Unrelated Plant Species. Diversity 2022, 14, 495. https://doi.org/10.3390/d14060495
Balaji R, Parani M. DNA Barcoding of the Market Samples of Single-Drug Herbal Powders Reveals Adulteration with Taxonomically Unrelated Plant Species. Diversity. 2022; 14(6):495. https://doi.org/10.3390/d14060495
Chicago/Turabian StyleBalaji, Raju, and Madasamy Parani. 2022. "DNA Barcoding of the Market Samples of Single-Drug Herbal Powders Reveals Adulteration with Taxonomically Unrelated Plant Species" Diversity 14, no. 6: 495. https://doi.org/10.3390/d14060495
APA StyleBalaji, R., & Parani, M. (2022). DNA Barcoding of the Market Samples of Single-Drug Herbal Powders Reveals Adulteration with Taxonomically Unrelated Plant Species. Diversity, 14(6), 495. https://doi.org/10.3390/d14060495