Potential Distribution and Medicinal Uses of the Mexican Plant Cuphea aequipetala Cav. (Lythraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model of Potential Distribution and Environmental Variables
2.3. Medicinal Uses of Cuphea aequipetala Cav.
3. Results
3.1. Potential Distribution of Cuphea aequipetala Cav.
3.2. Ethnobotanical Knowledge about Cuphea aequipetala Cav.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, A.; Stedman-Edwards, P.; Mang, J. The Root Causes of Biodiversity Loss, 1st ed.; Routledge: London, UK, 2000; pp. 1–10. [Google Scholar] [CrossRef]
- Loh, J.; Harmon, D. A global index of biocultural diversity. Ecol. Indic. 2005, 5, 231–241. [Google Scholar] [CrossRef]
- Sutherland, W. Parallel extinction risk and global distribution of languages and species. Nature 2003, 423, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Vidal, O.; Brusca, R.C. Mexico’s biocultural diversity in Peril. Rev. Biol. Trop. 2020, 68, 669–691. [Google Scholar] [CrossRef]
- Zaman, W.; Ye, J.; Saqib, S.; Liu, Y.; Shan, Z.; Hao, D.; Chen, Z.; Xiao, P. Predicting potential medicinal plants with phylogenetic topology: Inspiration from the research of traditional Chinese medicine. J. Ethnopharmacol. 2021, 281, 114515. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Santelises, R.; Del Castillo, R.F. Demographic and Socio-Economic Determinants of Traditional Plant Knowledge Among the Mixtecs of Oaxaca, Southern Mexico. Hum. Ecol. Interdiscip. J. 2015, 43, 655–667. [Google Scholar] [CrossRef]
- Gavin, M.C.; McCarter, J.; Mead, A.; Stepp, J.R.; Peterson, D.; Tang, R. Defining biocultural approaches to conservation. Trends Ecol. Evol. 2015, 30, 140–145. [Google Scholar] [CrossRef]
- MacArthur, R.H. Geographical Ecology: Patterns in the Distribution of Species, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1984; p. 241. [Google Scholar]
- Graham, C.H.; Ron, S.R.; Santos, J.C.; Schneider, C.J.; Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 2004, 58, 1781–1793. [Google Scholar] [CrossRef]
- Savino, C.; Diodato, L.; Gatto, M.A.; Zerda, H.R. Modelos de distribución potencial de especies. UNSE 2014, 1, 30–36. [Google Scholar] [CrossRef]
- Ferrier, S.; Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 2006, 43, 393–404. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B.; Nix, H.A.; Stein, J.L.; Stein, J.A. Climate and animal distribution: A climatic analysis of the Australian marsupial Trichosurus caninus. J. Biogeogr. 2001, 28, 293–304. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Merow, C.; Allen, J.M.; Aiello-Lammens, M.; Silander, J.A. Improving niche and range estimates with MaxEnt and point process models by integrating spatially explicit information. Glob. Ecol. Biogeogr. 2016, 25, 1022–1036. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, L.; Qi, S.; Jin, M.; Hu, J.; Lu, J. Effect of habitat factors on the understory plant diversity of Platycladus orientalis plantations in Beijing mountainous areas based on MaxEnt model. Ecol. Indic. 2021, 129, 1–9. [Google Scholar] [CrossRef]
- Kumar, D.; Rawat, S.; Joshi, R. Predicting the current and future suitable habitat distribution of the medicinal tree Oroxylum indicum (L.) Kurz in India. J. Appl. Res. Med. Aromat. Plants 2021, 23, 100309. [Google Scholar] [CrossRef]
- Tena Meza, M.; Navarro-Cerrillo, R.M.; Brizuela Torres, D. Distribution of Malpighia mexicana in Mexico and its implications for Barranca del Río Santiago. J. For. Res. 2021, 32, 1095–1103. [Google Scholar] [CrossRef]
- Hernández, F. Historia de las Plantas de la Nueva España. Available online: http://www.ibiologia.unam.mx/plantasnuevaespana/prologo.html (accessed on 27 August 2021).
- Martínez, M. Plantas Medicinales de México, 4th ed.; Editorial Botas: Distrito Federal, Mexico, 1959; pp. 1–630. [Google Scholar]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gómez-Sánchez, M.; Domínguez, F.; García-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef]
- Villarreal, M.L.; Alonso, D.; Melesio, G. Cytotoxic activity of some mexican plants used in traditional medicine. Fitoterapia 1992, 63, 518–522. [Google Scholar]
- Waizel-Bucay, J.; Martínez-Porcayo, G.; Villarreal-Ortega, M.L.; Alonso-Cortés, D.; Pliego-Castañeda, A. Estudio preliminar etnobotánico, fitoquímico, de la actividad citotóxica y antimicrobiana de Cuphea aequipetala Cav. (Lythraceae). Polibotánica 2003, 15, 99–108. [Google Scholar]
- Vega-Ávila, E.V.; Aguilar, R.T.; Jiménez-Estrada, M.; Ortega, M.L.; Román-Ramos, R. Cytotoxic activity of Cuphea aequipetala. Proc. West. Pharmacol. Soc. 2004, 47, 129–133. Available online: https://pubmed.ncbi.nlm.nih.gov/15633633/ (accessed on 17 May 2022).
- Martínez-Bonfil, B.P.; Pineda-Montero, M.; López-Laredo, A.R.; Salcedo-Morales, G.; Evangelista-Lozano, S.; Trejo-Tapia, G. A propagation procedure for Cuphea aequipetala Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. Bol. Latinoam. Caribe Plantas Med. Aromat. 2013, 12, 1–14. [Google Scholar]
- Palacios-Espinosa, J.F.; Arroyo-García, O.; García-Valencia, G.; Linares, E.; Bye, R.; Romero, I. Evidence of the anti-Helicobacter pyroli, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion. J. Ethnopharmacol. 2014, 151, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Uscanga-Palomeque, A.C.; Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Ávila, D.E.; Franco-Molina, M.A.; Arellano-Rodríguez, M.; Manilla-Muñoz, E.; Martínez-Torres, A.C.; Trejo-Ávila, L.M.; Rodríguez-Padilla, C. Inhibitory Effect of Cuphea aequipetala Extracts on Murine B16F10 Melanoma In Vitro and In Vivo. BioMed Res. Int. 2019, 2019, 8560527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Alvarado, T.D.; Mariezcurrena-Berasain, M.D.; Salem, A.Z.; Pizon, D.L. Antimicrobial and Antioxidant Activities of Two Medicinal Plants Cuphea aequipetala var. hispida (Cav.) Koehne and Eryngium comosum Delaroche F Against Bacteria Related to Equine Infections. J. Equine Vet. Sci. 2020, 94, 103269. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Arana-Argáez, V.; Yáñez-Barrientos, E.; Ramírez-Camacho, M.A.; Wrobel, K.; Torres-Romero, J.C.; León-Callejas, C.; Wrobel, K. Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae). Inflammopharmacology 2021, 29, 295–306. [Google Scholar] [CrossRef]
- Aguilar-Rodríguez, S.; Echeveste-Ramírez, N.L.; López-Villafranco, M.E.; Aguilar-Contreras, A.; Vega-Ávila, E.; Reyes-Chilpa, R. Etnobotánica, micrografía analítica de hojas y tallos y fitoquímico de Cuphea aequipetala Cav. (Lythraceae): Una contribución a la Farmacopea Herbolaria de los Estados Unidos Mexicanos (FHEUM). Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 316–330. [Google Scholar]
- Ortega, F.; Sedlocck, R.L.; Speed, R.C. Evolución tectónica de México durante el Fanerozoico. In Biodiversidad, Taxonomía y Biogeografía de Artópodos de México, 1st ed.; Llorente, J., González, E., Papavero, N., Eds.; UNAM-CONABIO: Ciudad de México, Mexico, 2000; Volume II, pp. 3–59. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía-UNAM: Distrito Federal, Mexico, 2004; pp. 19–74. [Google Scholar]
- Vidal-Zepeda, R. Las Regiones Climáticas de México, 1st ed.; Instituto de Geográfia-UNAM: Distrito Federal, Mexico, 2005. [Google Scholar]
- Espinosa, D.; Ocegueda, S.; Aguilar, C.; Flores, O.; Llorente-Bousquets, J. El conocimiento biogeográfico de las especies y su regionalización natural. In Capital Natural de México, 1st ed.; CONABIO: Distrito Federal, México, 2008; Volume I, pp. 33–65. [Google Scholar]
- Halffter, G.; Llorente-Bousquets, J.; Morrone, J.J. La perspectiva biogeográfica histórica. In Capital Natural de México, 1st ed.; CONABIO: Distrito Federal, México, 2008; Volume I, pp. 67–86. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Schapire, E. MaxEnt Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: https://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 17 May 2019).
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of MaxEnt. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- iNaturalist. Una Comunidad Para Naturalistas-iNaturalist. Available online: https://www.inaturalist.org/observations?place_id=any&taxon_id=146587 (accessed on 9 December 2019).
- WorldClim. Free Climate Data for Ecological Modeling and GIS. Available online: https://www.worldclim.org/ (accessed on 7 January 2020).
- Challenger, A.; Caballero, J. Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado, Presente y Futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 1st ed.; Instituto de Biología-Universidad nacional Autónoma de México (UNAM) y agrupación Sierra Madre SC: Distrito Federal, México, 1998; p. 847. [Google Scholar]
- CGIAR-CSI. Consultive Group for International Agricultural Research-Consortium for Spatial Information. Available online: https://srtm.csi.cgiar.org (accessed on 27 January 2020).
- Maples-Vermeersch, M. Regímenes de Humedad en el Suelo, 1:4000000. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/rehsu4mgw.html (accessed on 29 January 2020).
- INEGI. Conjunto de Datos Vectoriales de uso de suelo y Vegetación, 1:250000. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250s6gw.html (accessed on 29 January 2020).
- Kumar, S.; Stohlgren, T.J. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- DIVA-GIS. Available online: https://www.diva-gis.org (accessed on 12 January 2020).
- QGIS. Available online: https://www.qgis.org/es/site/index.html (accessed on 5 February 2020).
- Rzedowski, J. Vegetación Potencial, 1:4000000. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/vpr4mgw.html (accessed on 29 January 2020).
- García, E. Climas (Clasificación de Koppen, Modificado), 1:10000000. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/clima1mgw.html (accessed on 29 January 2020).
- SNIB. Geoportal del Sistema Nacional de Información sobre Biodiversidad. Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 27 January 2020).
- De Beer, J.; Van Wik, B. An ethnobotanical survey of the Agter-Hantam, Northem Cape Province, South Africa. S. Afr. J. Bot. 2011, 77, 741–754. [Google Scholar] [CrossRef] [Green Version]
- Dhyani, A.; Kadaverugu, R.; Nautiyal, B.P.; Nautiyal, M.C. Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan Region. Reg. Environ. Chang. 2021, 21, 30. [Google Scholar] [CrossRef]
- Duno, R.; Loera, I.; Angulo, D.F. A reassessment of Mappia (lcacinaceae) taxonomy using environmental data. Act. Bot. Mex. 2020, 127, e1716. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Distrito Federal, México, 2006; p. 504. [Google Scholar]
- INEGI. Hipsometría. Available online: http://www.conabio.gob.mx/informacion/metadata/gis/hipso4mgw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no (accessed on 15 August 2021).
- Global Biodiversity Information Facility. Cuphea aequipetala Cav. Available online: https://www.gbif.org/species/7534836 (accessed on 5 May 2022).
- Graham, S.A. Flora de Veracruz LYTHRACEAE, 1st ed.; Instituto de Ecología, A.C: Xalapa, Mexico, 1991; p. 47. [Google Scholar]
- Biblioteca Digital de la Medicina Tradicional Mexicana. Available online: http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=cuphea-aequipetala (accessed on 4 May 2022).
- Fonseca, R.; Rivera, L.; Vázquez, L. Guía Ilustrada de Plantas Medicinales en el Valle de México. Instituto Nacional de los Pueblos Indígenas. Available online: https://www.gob.mx/cms/uploads/attachment/file/568378/guia-ilustrada-de-plantas-medicinales-valle-de-mexico-inpi.pdf (accessed on 9 October 2021).
- CONABIO. Ficha Informativa de Cuphea aequipetala Cav. Available online: http://www.conabio.gob.mx/malezasdemexico/lythraceae/cuphea-aequipetala/fichas/ficha.htm (accessed on 27 January 2020).
- Cardenas-Sandoval, B.A.; López-Laredo, A.R.; Martínez-Bonfil, B.P.; Bermúdez-Torres, K.; Trejo-Tapia, G. Advances in the phytochemistry of Cuphea aequipetala, C. aequipetala var. hispida y C. lanceolata: Extraction and quantification of phenolic compounds and antioxidant activity. Rev. Mex. Ing. Quím. 2012, 11, 401–413. [Google Scholar]
- Jacobo-Herrera, N.J.; Jacobo-Herrera, F.E.; Zentella-Dehesa, A.; Andrade-Cetto, A.; Heinrich, M.; Pérez-Plasencia, C. Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. J. Ethnopharmacol. 2016, 179, 391–402. [Google Scholar] [CrossRef]
Code | Description of the Variable | Percentage of Contribution |
---|---|---|
Bio20 | Altitude (m) | 25 |
Bio14 | Precipitation in the driest period (mm) | 13.2 |
Bio9 | Average temperature in the driest quarter (°C) | 10.8 |
Bio10 | Average temperature in the warmest quarter (°C) | 9 |
Bio4 | Temperature seasonality (CV) | 6.6 |
Bio21 | Soil moisture regime | 5.4 |
Bio19 | Precipitation in the coldest quarter (mm) | 5.3 |
Bio7 | Annual temperature variation (°C) | 5 |
Bio15 | Precipitation seasonality (CV) | 4.4 |
Bio2 | Diurnal temperature variation (°C) | 3.6 |
Bio3 | Isothermality (dimensionless) | 3.5 |
Bio12 | Annual precipitation (mm) | 2.6 |
Bio11 | Average temperature in the coldest quarter (°C) | 1.8 |
Bio6 | Average minimum temperature in the coldest period (°C) | 1.2 |
Bio22 | Land cover (23 types) | 0.9 |
Bio1 | Average annual temperature (°C) | 0.7 |
Bio17 | Precipitation in the driest quarter (mm) | 0.5 |
Bio16 | Precipitation in the rainiest quarter (mm) | 0.2 |
Bio5 | Average maximum temperature in the warmest period (°C) | 0.2 |
Bio8 | Average temperature in the rainiest quarter (°C) | 0.1 |
Bio18 | Precipitation in the warmest quarter (mm) | 0.1 |
Bio13 | Precipitation in the rainiest period (mm) | 0 |
Features | Frecuency | % | |
---|---|---|---|
Gender | Female | 32 | 56.14 |
Male | 25 | 43.86 | |
Age group | Children/teenagers (6–14 years old) | 3 | 5.26 |
Young (15–24 years old) | 14 | 24.56 | |
Young adults (25–44 years old) | 21 | 36.84 | |
Mature adults (45–59 years old) | 14 | 24.56 | |
Elders (over 60 years old) | 5 | 8.77 | |
Education level | Basic | 10 | 17.54 |
Medium | 20 | 35.09 | |
High–medium | 16 | 28.07 | |
Technic | 2 | 3.51 | |
University | 7 | 12.28 | |
None | 2 | 3.51 | |
Cultural identity | Otomi | 2 | 3.51 |
Tlahuica | 15 | 26.32 | |
NI 1 | 40 | 70.18 | |
Origin place 2 | Huitzilac, Huitzilac, Mor. | 15 | 26.32 |
Santa Lucía, Ocuilan, Edo. Mex. 3 | 12 | 21.05 | |
San Jerónimo Acazulco, Ocoyoacac, Edo. Mex. 3 | 1 | 1.75 | |
San Juan Atzingo, Ocuilan, Edo. Mex. 3 | 5 | 8.77 | |
San Nicolás, Coatepec, Edo. Mex. 3 | 1 | 1.75 | |
Santa Martha, Ocuilan, Edo. Mex. 3 | 14 | 24.56 | |
Ocuilan, Ocuilan, Edo. Mex. 3 | 8 | 14.04 | |
Toluca, Edo. Mex. 3 | 1 | 1.75 |
Plant Part Used | Preparation Method | Medicinal Use | Frecuency of Citation |
---|---|---|---|
Aerial parts (flowers, leaves, and stems) | Decoction | Wound washing | 7 |
Pospartum baths | 1 | ||
To promote wound healing | 4 | ||
Bumps and bruises | 1 | ||
Infusion | Headache, tooth, bone, or throat pain | 6 | |
Dizziness | 2 | ||
Tumors | 2 | ||
Stomach upsets and disorders | 2 | ||
Sprain | 1 | ||
Stress | 1 | ||
Cough | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garibay-Castro, L.R.; Gutiérrez-Yurrita, P.J.; López-Laredo, A.R.; Hernández-Ruíz, J.; Trejo-Espino, J.L. Potential Distribution and Medicinal Uses of the Mexican Plant Cuphea aequipetala Cav. (Lythraceae). Diversity 2022, 14, 403. https://doi.org/10.3390/d14050403
Garibay-Castro LR, Gutiérrez-Yurrita PJ, López-Laredo AR, Hernández-Ruíz J, Trejo-Espino JL. Potential Distribution and Medicinal Uses of the Mexican Plant Cuphea aequipetala Cav. (Lythraceae). Diversity. 2022; 14(5):403. https://doi.org/10.3390/d14050403
Chicago/Turabian StyleGaribay-Castro, Luis Rafael, Pedro Joaquín Gutiérrez-Yurrita, Alma Rosa López-Laredo, Jesús Hernández-Ruíz, and José Luis Trejo-Espino. 2022. "Potential Distribution and Medicinal Uses of the Mexican Plant Cuphea aequipetala Cav. (Lythraceae)" Diversity 14, no. 5: 403. https://doi.org/10.3390/d14050403
APA StyleGaribay-Castro, L. R., Gutiérrez-Yurrita, P. J., López-Laredo, A. R., Hernández-Ruíz, J., & Trejo-Espino, J. L. (2022). Potential Distribution and Medicinal Uses of the Mexican Plant Cuphea aequipetala Cav. (Lythraceae). Diversity, 14(5), 403. https://doi.org/10.3390/d14050403