An Overview of Modern Applications of Negative Binomial Modelling in Ecology and Biodiversity
Abstract
:1. Introduction
2. Traditional Negative Binomial Modelling
2.1. The Negative Binomial Distribution
2.2. Traditional Uses of Negative Binomial Models
3. Negative Binomial Modelling in the 21st Century
3.1. Negative Binomial as a Poisson Mixture Model and Beyond
3.2. Occurrence/Presence-Absence Data
3.3. Zero-Truncated and Zero-Inflated Data
3.4. Species Richness and Biodiversity Estimation
3.5. Occupancy-Detection and Distance Sampling Methods
3.6. Joint Species Distribution and Compositional Data Models
4. Model Fitting and Software
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’hara, R.B.; Kotze, D.J. Do not log-transform count data. Methods Ecol. Evol. 2010, 1, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Conlisk, E.; Conlisk, J.; Harte, J. The impossibility of estimating a negative binomial clustering parameter from presence-absence data: A comment on He and Gaston. Am. Nat. 2007, 170, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Solow, A.R.; Smith, W.K. On predicting abundance from occupancy. Am. Nat. 2010, 176, 96–98. [Google Scholar] [CrossRef] [Green Version]
- Hwang, W.H.; Blakey, R.V.; Stoklosa, J. Right-censored mixed Poisson count models with detection times. J. Agric. Biol. Environ. Stat. 2020, 25, 112–132. [Google Scholar] [CrossRef]
- Gibb, H.; Stoklosa, J.; Warton, D.I.; Brown, A.M.; Andrew, N.R.; Cunningham, S.A. Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 2015, 177, 519–531. [Google Scholar] [CrossRef]
- McCrea, R.S.; Morgan, B.J. Analysis of Capture—Recapture Data; Chapman & Hall/CRC: London, UK, 2014. [Google Scholar]
- Hoffmann, D. Negative binomial control limits for count data with extra-Poisson variation. Pharm. Stat. 2003, 2, 127–132. [Google Scholar] [CrossRef]
- Blasco-Moreno, A.; Pérez-Casany, M.; Puig, P.; Morante, M.; Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 2019, 10, 949–959. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Smith, G.A. Analyzing Ecological Data; Springer: New York, NY, USA, 2007. [Google Scholar]
- Lindén, A.; Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 2011, 92, 1414–1421. [Google Scholar] [CrossRef]
- Conn, P.B.; Johnson, D.S.; Williams, P.J.; Melin, S.R.; Hooten, M.B. A guide to Bayesian model checking for ecologists. Ecol. Model. 2018, 88, 526–542. [Google Scholar] [CrossRef]
- Richards, S.A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 2007, 45, 218–227. [Google Scholar] [CrossRef]
- Harrison, X.A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warton, D.I. Why you cannot transform your way out of trouble for small counts. Biometrics 2018, 74, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joe, H.; Zhu, R. Generalized Poisson distribution: The property of mixture of Poisson and comparison with negative binomial distribution. Biom. J. 2005, 47, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.J.; Thorson, J.T.; Shelton, A.O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 2014, 95, 3173–3180. [Google Scholar] [CrossRef]
- Huang, A. Mean-parametrized Conway-Maxwell-Poisson regression models for dispersed counts. Stat. Model. 2017, 17, 359–380. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.R.; Woiwod, I.; Perry, J. The negative binomial as a dynamic ecological model for aggregation, and the density dependence of k. J. Anim. Ecol. 1979, 48, 289–304. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Boveng, P.L. Quasi-Poisson vs negative binomial regression: How should we model overdispersed count data? Ecology 2007, 88, 2766–2772. [Google Scholar] [CrossRef] [Green Version]
- Warton, D.I. Many zeros does not mean zero inflation: Comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 2005, 16, 275–289. [Google Scholar] [CrossRef]
- Martin, T.G.; Wintle, B.A.; Rhodes, J.R.; Kuhnert, P.M.; Field, S.A.; Low-Choy, S.J.; Tyre, A.J.; Possingham, H. Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations. Ecol. Lett. 2005, 8, 1235–1246. [Google Scholar] [CrossRef] [Green Version]
- Warton, D.I.; Foster, S.D.; De’ath, G.; Stoklosa, J.; Dunstan, P.K. Model-based thinking for community ecology. Plant Ecol. 2015, 216, 669–682. [Google Scholar] [CrossRef]
- White, G.C.; Bennetts, R.E. Analysis of frequency count data using the negative binomial distribution. Ecology 1996, 77, 2549–2557. [Google Scholar] [CrossRef]
- Hampton, S.E.; Strasser, C.A.; Tewksbury, J.J.; Gram, W.K.; Budden, A.E.; Batcheller, A.L.; Duke, C.S.; Porter, J.H. Big data and the future of ecology. Front. Ecol. Environ. 2013, 11, 156–162. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.A. Bayesian Methods in Ecology; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Millar, R.B. Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics 2009, 65, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Hui, F.K.C.; Taskinen, S.; Pledger, S.; Foster, S.D.; Warton, D.I. Model-based approaches to unconstrained ordination. Methods Ecol. Evol. 2015, 6, 399–411. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Alexander, N.; Moyeed, R.; Stander, J. Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 2000, 1, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.B. Testing for overdispersion in Poisson and binomial regression models. J. Am. Stat. Assoc. 1992, 87, 451–457. [Google Scholar] [CrossRef]
- Böhning, D.D. A note on a test for Poisson overdispersion. Biometrika 1994, 81, 418–419. [Google Scholar] [CrossRef]
- Warton, D.I.; Lyons, M.; Stoklosa, J.; Ives, A.R. Three points to consider when choosing a LM or GLM test for count data. Methods Ecol. Evol. 2016, 7, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Hilbe, J.M. Negative Binomial Regression, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Thurston, S.W.; Wand, M.P.; Wiencke, J.K. Negative Binomial Additive Models. Biometrics 2000, 56, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 28, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Naumann, U.; Wright, S.T.; Warton, D.I. mvabund—An R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 2012, 3, 471–474. [Google Scholar] [CrossRef]
- Brown, A.M.; Warton, D.I.; Andrew, N.R.; Binns, M.; Cassis, G.; Gibb, H. The fourth-corner solution—Using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 2014, 5, 344–352. [Google Scholar] [CrossRef]
- Diggle, P.J.; Milne, R.K. Negative binomial quadrat counts and point processes. Scand. J. Stat. 1983, 10, 257–267. [Google Scholar]
- Cressie, N.; Calder, C.A.; Clark, J.S.; Ver Hoef, J.M.; Wikle, C.K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 2009, 19, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Manly, B.F. Analysis of polymorphic variation in different types of habitat. Biometrics 1983, 39, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Bonat, W.H.; Jørgensen, B.; Kokonendji, C.C.; Hinde, J.; Demétrio, C.G. Extended Poisson—Tweedie: Properties and regression models for count data. Stat. Model. 2018, 18, 24–49. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.K.C.; Warton, D.I.; Ormerod, J.T.; Haapaniemi, V.; Taskinen, S. Variational approximations for generalized linear latent variable models. J. Comput. Graph. Stat. 2017, 26, 35–43. [Google Scholar] [CrossRef]
- Royle, J.A.; Dorazio, R.M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Tran, P.; Waller, L. Variability in results from negative binomial models for lyme disease measured at different spatial scales. Environ. Res. 2015, 136, 373–380. [Google Scholar] [CrossRef]
- Hwang, W.H.; Huggins, R.M.; Stoklosa, J. Estimating negative binomial parameters from occurrence data with detection times. Biom. J. 2016, 58, 1409–1427. [Google Scholar] [CrossRef]
- Hwang, W.H.; Huggins, R.M. Estimating abundance from presence-absence maps via a paired negative binomial model. Scand. J. Stat. 2016, 43, 573–586. [Google Scholar] [CrossRef]
- Huggins, R.M.; Hwang, W.H.; Stoklosa, J. Estimation of abundance from presence-absence maps using cluster models. Environ. Ecol. Stat. 2018, 25, 495–522. [Google Scholar] [CrossRef]
- Hwang, W.H.; Huggins, R.M.; Stoklosa, J. A model for analysing clustered occurrence data. Biometrics 2021, in press. [Google Scholar]
- Böhning, D.D. Power series mixtures and the ratio plot with applications to zero-truncated count distribution modelling. Metron 2015, 73, 201–216. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.A. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hwang, W.H.; Heinze, D.; Stoklosa, J. A weighted partial likelihood approach for zero-truncated models. Biom. J. 2019, 61, 1073–1087. [Google Scholar] [CrossRef]
- Zhang, W.; Bonner, S.J. On continuous-time capture—Recapture in closed populations. Biometrics 2020, 76, 1028–1033. [Google Scholar] [CrossRef]
- Boyce, M.S.; MacKenzie, D.I.; Manly, B.F.; Haroldson, M.A.; Moody, D. Negative binomial models for abundance estimation of multiple closed populations. J. Wildl. Manag. 2001, 65, 498–509. [Google Scholar] [CrossRef]
- Anan, O.; Böhning, D.D.; Maruotti, A. Uncertainty estimation in heterogeneous capture–recapture count data. J. Stat. Comp. Sim. 2017, 87, 2094–2114. [Google Scholar] [CrossRef]
- Welsh, A.H.; Cunningham, R.B.; Chambers, R. Methodology for estimating the abundance of rare animals: Seabird nesting on North East Herald Cay. Biometrics 2000, 56, 22–30. [Google Scholar] [CrossRef]
- Yee, T.W. Vector Generalized Linear and Additive Models; Springer: New York, NY, USA, 2015. [Google Scholar]
- Balderama, E.; Gardner, G.; Reich, B. A spatial–temporal double-hurdle model for extremely over-dispersed avian count data. Spat. Stat. 2016, 18, 263–275. [Google Scholar] [CrossRef]
- Sadykova, D.; Scott, B.E.; De Dominicis, M.; Wakelin, S.L.; Sadykov, A.; Wolf, J. Bayesian joint models with INLA exploring marine mobile predator—Prey and competitor species habitat overlap. Ecol. Evol. 2017, 7, 5212–5226. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A.; Corbet, S.; Williams, C. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, T.J. Rarefaction and extrapolation of species richness using an area-based Fisher’s logseries. Ecol. Evol. 2017, 7, 10066–10078. [Google Scholar] [CrossRef] [PubMed]
- Slik, J.W.F.; Arroyo-Rodríguez, V.; Aiba, S.I.; Alvarez-Loayza, P.; Alves, L.F.; Ashton, P.; Balvanera, P.; Bastian, M.L.; Bellingham, P.J.; van den Berg, E.; et al. An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci. USA 2015, 112, 7472–7477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ter Steege, H.; Sabatier, D.; Mota de Oliveira, S.; Magnusson, W.E.; Molino, J.F.; Gomes, V.F.; Pos, E.T.; Salomão, R.P. Estimating species richness in hyper-diverse large tree communities. Ecology 2017, 98, 1444–1454. [Google Scholar] [CrossRef]
- Foster, S.D.; Dunstan, P.K. The analysis of biodiversity using rank abundance distributions. Biometrics 2010, 66, 186–195. [Google Scholar] [CrossRef]
- Connolly, S.R.; Thibaut, L.M. A comparative analysis of alternative approaches to fitting species-abundance models. J. Plant Ecol. 2012, 5, 32–45. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, T.J.; Condit, R.; Hubbell, S.P. Community-level species’ correlated distribution can be scale-independent and related to the evenness of abundance. Ecology 2018, 12, 2787–2800. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 2nd ed.; Academic Press: Burlington, VT, USA, 2017. [Google Scholar]
- Royle, J.A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 2004, 60, 108–115. [Google Scholar] [CrossRef]
- Sileshi, G.; Hailu, G.; Nyadz, G.I. Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data. Ecol. Model. 2009, 220, 1764–1775. [Google Scholar] [CrossRef]
- Knape, J.; Arlt, D.; Barraquand, F.; Berg, A.; Chevalier, M.; Pärt, T.; Ruete, A.; Żmihorski, M. Sensitivity of binomial N-mixture models to overdispersion: The importance of assessing model fit. Methods Ecol. Evol. 2018, 9, 2102–2114. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Morgan, B.J.; Ridout, M.S.; Linkie, M. Species occupancy modeling for detection data collected along a transect. J. Agric. Biol. Environ. Stat. 2011, 16, 301–317. [Google Scholar] [CrossRef]
- Kéry, M. Identifiability in N-mixture models: A large-scale screening test with bird data. Ecology 2018, 99, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Kéry, M.; Royle, J.A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, 1st ed.; Academic Press & Elsevier: New York, NY, USA, 2016. [Google Scholar]
- Sillett, T.S.; Chandler, R.B.; Royle, J.A.; Kéry, M.; Morrison, S.A. Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecol. Appl. 2012, 22, 1997–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J.S.; Gelfand, A.E.; Woodall, C.W.; Zhu, K. More than the sum of the parts: Forest climate response from joint species distribution models. Ecol. Appl. 2014, 24, 990–999. [Google Scholar] [CrossRef]
- Warton, D.I.; Blanchet, F.G.; O’Hara, R.B.; Ovaskainen, O.; Taskinen, S.; Walker, S.C.; Hui, F.K.C. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 2015, 30, 766–779. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Tikhonov, G.; Norberg, A.; Blanchet, F.G.; Duan, L.; Dunson, D.; Roslin, T.; Abrego, N. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 2017, 20, 561–576. [Google Scholar] [CrossRef]
- Björk, J.R.; Hui, F.K.C.; O’Hara, R.B.; Montoya, J.M. Uncovering the drivers of host-associated microbiota with joint species distribution modelling. Mol. Ecol. 2018, 27, 2714–2724. [Google Scholar] [CrossRef]
- Niku, J.; Brooks, W.; Herliansyah, R.; Hui, F.K.; Taskinen, S.; Warton, D.I. Efficient estimation of generalized linear latent variable models. PLoS ONE 2019, 14, e0216129. [Google Scholar] [CrossRef]
- Popovic, G.C.; Hui, F.K.C.; Warton, D.I. Fast model-based ordination with copulas. Methods Ecol. Evol. 2022, 13, 194–202. [Google Scholar] [CrossRef]
- Hui, F.K. Model-based simultaneous clustering and ordination of multivariate abundance data in ecology. Comput. Stat. Data Anal. 2017, 105, 1–10. [Google Scholar] [CrossRef]
- van der Veen, B.; Hui, F.K.C.; Hovstad, K.A.; Solbu, E.B.; O’Hara, R.B. Model-based ordination for species with unequal niche widths. Methods Ecol. Evol. 2021, 12, 1288–1300. [Google Scholar] [CrossRef]
- Tobler, M.W.; Kéry, M.; Hui, F.K.C.; Gurutzeta, G.A.; Knaus, P.; Sattler, T. Joint species distribution models with species correlations and imperfect detection. Ecology 2019, 100, 02754. [Google Scholar] [CrossRef] [PubMed]
- Thorson, J.T.; Scheuerell, M.D.; Shelton, A.O.; See, K.E.; Skaug, H.J.; Kristensen, K. Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range. Methods Ecol. Evol. 2015, 6, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Thorson, J.T.; Ianelli, J.N.; Larsen, E.A.; Ries, L.; Scheuerell, M.D.; Szuwalski, C.; Zipkin, E.F. Joint dynamic species distribution models: A tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biogeogr. 2016, 25, 1144–1158. [Google Scholar] [CrossRef]
- Thorson, J.T. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 2019, 210, 143–1161. [Google Scholar] [CrossRef]
- Sankaran, K.; Holmes, S.P. Latent variable modeling for the microbiome. Biostatistics 2018, 20, 599–1614. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, H.; Wang, T. Model-Based Microbiome Data Ordination: A Variational Approximation Approach. J. Comput Graph. Stat. 2021, 30, 1036–1048. [Google Scholar] [CrossRef]
- Jiang, S.; Xiao, G.; Koh, A.Y.; Kim, J.; Li, Q.; Zhan, X. A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data. Biostatistics 2019, 22, 522–540. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.K. boral—Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 2016, 7, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.O. Extended moment series and the parameters of the negative binomial distribution. Biometrics 1984, 40, 249–252. [Google Scholar] [CrossRef]
- Binet, F. Fitting the negative binomial distribution. Biometrics 1986, 42, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Lawless, J.F. Negative binomial and mixed Poisson regression. Can. J. Stat. 1987, 15, 209–225. [Google Scholar] [CrossRef]
- Clark, S.J.; Perry, J.N. Estimation of the negative binomial parameter by maximum quasi-likelihood. Biometrics 1989, 45, 309–316. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Lloyd-Smith, J.O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2007, 2, e180. [Google Scholar] [CrossRef]
- Solis-Trapala, I.; Farewell, V. Regression analysis of overdispersed correlated count data with subject specific covariates. Stat. Med. 2005, 24, 2557–2575. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Meeter, D. Negative binomial cross-tabulations, with applications to abundance data. Biometrics 1993, 49, 195–207. [Google Scholar] [CrossRef]
- Saha, K.; Paul, S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 2005, 61, 179–185. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ryan, Y.Y.; Faraway, J.J. Bayesian Regression with INLA; Chapman & Hall/CRC: London, UK, 2018. [Google Scholar]
- Bonat, W.H.; Olivero, J.; Grande-Vega, M.; Farfán, M.A.; Fa, J.E. Modelling the covariance structure in marginal multivariate count models: Hunting in Bioko Island. J. Agric. Biol. Environ. Stat. 2017, 22, 446–464. [Google Scholar] [CrossRef]
- Yu, D.; Huber, W.; Vitek, O. Shrinkage estimation of dispersion in negative binomial models for RNA-seq experiments with small sample size. Bioinformatics 2013, 29, 1275–1282. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wang, C.; Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013, 14, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, F.K.C.; Müller, S.; Welsh, A.H. Joint selection in mixed models using regularized PQL. J. Am. Stat. Assoc. 2017, 112, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Lehman, R.R.; Archer, K.J. Penalized negative binomial models for modeling an overdispersed count outcome with a high-dimensional predictor space: Application predicting micronuclei frequency. PLoS ONE 2019, 14, 0209923. [Google Scholar] [CrossRef] [PubMed]
- Hooten, M.B.; Hobbs, N.T. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 2015, 85, 3–28. [Google Scholar] [CrossRef]
- Warton, D.I. Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations. Biometrics 2011, 67, 116–123. [Google Scholar] [CrossRef]
- Warton, D.I.; Guttorp, P. Compositional analysis of overdispersed counts using generalized estimating equations. Environ. Ecol. Stat. 2011, 18, 427–446. [Google Scholar] [CrossRef]
- Stoklosa, J.; Warton, D.I. A generalized estimating equation approach to multivariate adaptive regression splines. J. Comput. Graph. Stat. 2018, 27, 245–253. [Google Scholar] [CrossRef]
- Brown, J.H.; Mehlman, D.W.; Stevens, G.C. Spatial variation in abundance. Ecology 1995, 76, 2028–2043. [Google Scholar] [CrossRef]
- Young, L.J.; Young, J.H. A spatial view of the negative binomial parameter k when describing insect populations. Conf. Appl. Stat. Agric. 1990. [Google Scholar] [CrossRef] [Green Version]
- McCullagh, P. Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall/CRC: London, UK, 1989. [Google Scholar]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. C-Appl. 2005, 54, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Naimi, B.; Araujo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, J.M.; Certain, G.; Kraan, C.; Dormann, C.F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecol. Biogeogr. 2014, 23, 99–112. [Google Scholar] [CrossRef]
- Caradima, B.; Schuwirth, N.; Reichert, P. From individual to joint species distribution models: A comparison of model complexity and predictive performance. J. Biogeogr. 2019, 46, 2260–2274. [Google Scholar] [CrossRef]
- Stoklosa, J.; Gibb, H.; Warton, D.I. Fast forward selection for generalized estimating equations with a large number of predictor variables. Biometrics 2014, 70, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Schielzeth, H.; Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 2013, 4, 14–24. [Google Scholar] [CrossRef]
- Ives, A.R.; Helmus, M.R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 2011, 81, 511–525. [Google Scholar] [CrossRef]
- Blakey, R.V.; Law, B.S.; Kingsford, R.T.; Tap, P.; Stoklosa, J.; Williamson, K. Bat and invertebrate communities respond positively to large-scale thinning of forest regrowth. J. Appl. Ecol. 2016, 53, 1694–1703. [Google Scholar] [CrossRef] [Green Version]
- Irwin, B.J.; Wagner, T.; Bence, J.R.; Kepler, M.V.; Liu, W.; Hayes, D.B. Estimating spatial and temporal components of variation for fisheries count data using negative binomial mixed models. Trans. Am. Fish. Soc. 2013, 142, 171–183. [Google Scholar] [CrossRef]
- Gregoire, G. Negative binomial distributions for point processes. Stoch. Proc. Appl. 1984, 16, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Blakey, R.V.; Law, B.S.; Kingsford, R.T.; Stoklosa, J. Terrestrial laser scanning reveals below-canopy bat trait relationships with forest structure. Remote Sens. Environ. 2017, 198, 40–51. [Google Scholar] [CrossRef]
- Wilson, K.; Gerenfell, B.; Shaw, D. Analysis of aggregated parasite distributions: A comparison of methods. Funct. Ecol. 1996, 10, 592–601. [Google Scholar] [CrossRef]
Spp. | Model | |||
---|---|---|---|---|
Laci | Poisson | −0.38 (−0.69, −0.06) | −0.01 (−0.30, 0.29) | −0.47 (−0.83, −0.11) |
Poisson-log-normal mixt. | −0.42 (−0.76, −0.13) | 0.01 (−0.28, 0.31) | −0.45 (−0.77, −0.12) | |
Poisson-gamma mixt. | −0.39 (−0.73, −0.04) | 0.07 (−0.29, 0.43) | −0.46 (−0.87, −0.06) | |
Poisson–Tweedie mixt. | −0.37 (−0.43, −0.31) | −0.00 (−0.06, 0.06 | −0.44 (−0.52, −0.37) | |
Lano | Poisson | −0.88 (−1.30, −0.46) | 0.63 (0.19, 1.08) | −0.02 (−0.35, 0.32) |
Poisson-log-normal mixt. | −1.09 (−2.07, −0.54) | 0.71 (0.21, 1.34) | −0.04 (−0.51, 0.34) | |
Poisson-gamma mixt. | −0.97 (−1.50, −0.44) | 0.77 (0.08, 1.46) | 0.00 (−0.42, 0.42) | |
Poisson–Tweedie mixt. | −0.89 (−0.98, −0.80) | 0.64 (0.55, 0.74) | −0.08 (−0.16, −0.00) | |
Myyu | Poisson | −0.36 (−0.72, −0.01) | 0.81 (0.55, 1.07) | −1.39 (−1.72, −1.05) |
Poisson-log-normal mixt. | −0.86 (−1.63, −0.31) | 0.46 (−0.06, 0.98) | −0.99 (−1.65, −0.43) | |
Poisson-gamma mixt. | −0.03 (−0.47, 0.40) | 0.36 (−0.14, 0.86) | −1.02 (−1.58, −0.46) | |
Poisson–Tweedie mixt. | 0.13 (0.07, 0.19) | 0.53 (0.45, 0.61) | −0.87 (−0.97, −0.78) | |
Tabr | Poisson | 2.08 (1.98, 2.17) | 0.34 (0.25, 0.44) | −0.53 (−0.63, −0.42) |
Poisson-log-normal mixt. | 0.87 (0.39, 1.29) | 0.82 (0.37, 1.33) | −0.48 (−0.93, −0.05) | |
Poisson-gamma mixt. | 1.98 (1.64, 2.33) | 0.74 (0.15, 1.33) | −0.75 (−1.17, −0.33) | |
Poisson–Tweedie mixt. | 2.09 (2.06, 2.12) | 0.56 (0.53, 0.59) | −0.22 (−0.25, −0.19) | |
Epfu | Poisson | 1.39 (1.26, 1.52) | 0.30 (0.18, 0.42) | 0.62 (0.54, 0.70) |
Poisson-log-normal mixt. | 0.07 (−0.59, 0.61) | 0.61 (0.06, 1.25) | 0.57 (0.06, 1.10) | |
Poisson-gamma mixt. | 1.50 (1.02, 1.97) | 0.18 (−0.58, 0.93) | 0.59 (0.06, 1.12) | |
Poisson–Tweedie mixt. | 1.58 (1.53, 1.62) | 0.36 (0.32, 0.40) | 0.31 (0.2, 0.34) | |
Myca | Poisson | 2.16 (2.07, 2.24) | 0.31 (0.21, 0.40) | 0.14 (0.06, 0.21) |
Poisson-log-normal mixt. | 0.64 (0.11, 1.10) | 0.32 (−0.15, 0.78) | 0.09 (−0.35, 0.55) | |
Poisson-gamma mixt. | 2.16 (1.70, 2.62) | 0.52 (0.03, 1.02) | 0.25 (−0.24, 0.74) | |
Poisson–Tweedie mixt. | 2.20 (2.17, 2.24) | 0.09 (0.05, 0.13) | 0.11 (0.07, 0.15) | |
Pahe | Poisson | 0.75 (0.55, 0.94) | 0.34 (0.18, 0.51) | −0.83 (−1.04, −0.62) |
Poisson-log-normal mixt. | −1.39 (−2.58, −0.57) | 1.16 (0.40, 2.12) | −1.32 (−2.34, −0.51) | |
Poisson-gamma mixt. | 0.70 (0.14, 1.26) | 0.71 (−0.07, 1.49) | −1.04 (−1.75, −0.29) | |
Poisson–Tweedie mixt. | 0.71 (0.64, 0.79) | 0.65 (0.57, 0.74) | −0.66 (−0.76, −0.57) |
Spp. | Model | |||
---|---|---|---|---|
Laci | NB GLM | −0.38 (−0.74, −0.01) | 0.03 (−0.33, 0.38) | −0.47 (−0.88, −0.05) |
ZI-Poisson | 0.08 (−0.40, 0.57) | −0.05 (−0.41, 0.31) | −0.34 (−0.85, 0.17) | |
ZI-NB | 0.08 (−0.40, 0.57) | −0.05 (−0.41, 0.31) | −0.34 (−0.85, 0.17) | |
Lano | NB GLM | −0.91 (−1.41, −0.41) | 0.72 (0.16, 1.27) | 0.01 (−0.42, 0.43) |
ZI-Poisson | −0.62 (−1.05, −0.19) | 0.50 (0.02, 0.97) | 0.61 (0.08, 1.14) | |
ZI-NB | −0.64 (−1.14, −0.14) | 0.57 (−0.03, 1.17) | 0.66 (0.01, 1.31) | |
Myyu | NB GLM | −0.02 (−0.50, 0.46) | 0.34 (−0.14, 0.81) | −0.96 (−1.53, −0.39) |
ZI-Poisson | 0.51 (0.08, 0.94) | 0.44 (0.09, 0.78) | −1.05 (−1.46, −0.63) | |
ZI-NB | 0.17 (−0.31, 0.65) | −0.06 (−0.63, 0.51) | −1.35 (−1.99, −0.72) | |
Tabr | NB GLM | 1.96 (1.58, 2.34) | 0.71 (0.32, 1.11) | −0.73 (−1.13, −0.34) |
ZI-Poisson | 2.41 (2.32, 2.51) | −0.02 (−0.13, 0.09) | −0.46 (−0.57, −0.35) | |
ZI-NB | 2.16 (1.75, 2.58) | 0.24 (−0.36, 0.85) | −0.69 (−1.11, −0.28) | |
Epfu | NB GLM | 1.44 (0.99, 1.88) | 0.24 (−0.21, 0.69) | 0.51 (0.07, 0.95) |
ZI-Poisson | 1.98 (1.85, 2.12) | −0.09 (−0.27, 0.10) | 0.56 (0.47, 0.65) | |
ZI-NB | 1.68 (1.22, 2.13) | −0.44 (−1.10, 0.22) | 0.76 (0.34, 1.18) | |
Myca | NB GLM | 2.12 (1.67, 2.56) | 0.51 (0.06, 0.95) | 0.25 (−0.19, 0.69) |
ZI-Poisson | 2.49 (2.40, 2.57) | 0.26 (0.17, 0.34) | 0.07 (0.00, 0.14) | |
ZI-NB | 2.12 (1.67, 2.56) | 0.51 (−0.02, 1.04) | 0.25 (−0.25, 0.74) | |
Pahe | NB GLM | 0.62 (0.03, 1.21) | 0.67 (0.05, 1.29) | −1.08 (−1.75, −0.41) |
ZI-Poisson | 1.84 (1.63, 2.04) | −0.23 (−0.42, −0.03) | −0.55 (−0.79, −0.31) | |
ZI-NB | 1.43 (0.53, 2.32) | −0.27 (−1.09, 0.55) | −0.81 (−1.81, 0.18) |
Model: | Modelling Usage and Notes: | R-Package(s): | Common Function: |
---|---|---|---|
Generalised linear model (GLM) | Single species () | MASS | glm.nb() |
Generalised additive model (GAM) | Smoothing | mgcv | gam(family = nb()) |
gamlss | gamlss(family = NBI) | ||
Generalised linear mixed model (GLMM) | Random/mixed effects | lme4 | glmer.nb() |
glmmTMB/glmmadmb | glmmTMBfamily = nbinom2() | ||
Generalised additive mixed model | mgcv | gamm(family = nb()) | |
GLM with regularisation penalties | High-dimension | glmnet | glmnet(family = negative.binomial) |
GLMM with regularisation penalties | rpql | rpql(family = "nb2") | |
Species distribution model | Stacked SDM () | mvabund | manyglm(family = "negative.binomial") |
Stacked and Reduced-rank SDMs/GAMs | VGAM | vglm(family = negbinomial()) | |
Joint species distribution model | (Residual) correlation across species | boral | boral(family = "negative.binomial") |
gllvm | gllvm(family = "negative.binomial") | ||
Poisson-log-normal mixture model | HierarchicalGOF | pois.overd.no.spat() | |
Poisson-gamma mixture model | bsamGP | gblr(family = "poisson.gamma") | |
Poisson–Tweedie mixture model | ptmixed | ptglm() | |
Zero-inflated GLM | pscl/countreg | zeroinfl(dist = "negbin") | |
VGAM | vglm(family = zinegbin()) | ||
gamlss | family = ZIP()/ZINBI() | ||
Zero-truncated GLM | countreg | zerotrunc(dist = "negbin") | |
VGAM | vglm(family = posnegbinom()) | ||
gamlss.tr | gen.trun(family = "PO") | ||
N-mixture models | Imperfect detection | unmarked | pcount(mixture = "NB") |
Generalised multinomial N-mixture | Three hierarchical levels | unmarked | gmultmix(mixture = "NB") |
Hierarchical distance sampling | unmarked | gdistsamp(mixture = "NB") |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoklosa, J.; Blakey, R.V.; Hui, F.K.C. An Overview of Modern Applications of Negative Binomial Modelling in Ecology and Biodiversity. Diversity 2022, 14, 320. https://doi.org/10.3390/d14050320
Stoklosa J, Blakey RV, Hui FKC. An Overview of Modern Applications of Negative Binomial Modelling in Ecology and Biodiversity. Diversity. 2022; 14(5):320. https://doi.org/10.3390/d14050320
Chicago/Turabian StyleStoklosa, Jakub, Rachel V. Blakey, and Francis K. C. Hui. 2022. "An Overview of Modern Applications of Negative Binomial Modelling in Ecology and Biodiversity" Diversity 14, no. 5: 320. https://doi.org/10.3390/d14050320
APA StyleStoklosa, J., Blakey, R. V., & Hui, F. K. C. (2022). An Overview of Modern Applications of Negative Binomial Modelling in Ecology and Biodiversity. Diversity, 14(5), 320. https://doi.org/10.3390/d14050320