Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Citizen Science Schemes Geographical Coverage
2.2. Sampling Scheme Design and Description
2.3. Monitoring Programme Establishment and Historical Trends
2.4. Sources of Sampling Bias in Species Detectability and Trend Calculation
2.5. Scientific Questions for Tracking Biodiversity Change
2.6. Programme Stability and Internal Structure
3. Results and Discussion
3.1. Monitoring Programme Establishment and Historical Trends
3.2. Sources of Sampling Bias in Species Detectability and Trend Calculation
3.3. Scientific Questions for Tracking Biodiversity Change
3.4. Programme Stability and Internal Structure
3.5. Serious Problems in Biodiversity Conservation in Protected Areas in Catalonia: The Complexity of Spatial Scale and Stakeholder Agreement and Commitment
3.6. Current Challenges, Recommendations, and Future Opportunities
- -
- The selection of potential collaborators within the general public is a key element for the programme design.
- -
- Outreach and communication must be effective and follow the current channels that participants use during the daily lives. News, courses, and specific training must be provided.
- -
- The sampling effort must be scaled to the participants’ possibilities but adapted to the scientific question to acquire good-quality data.
- -
- The motivations driving a volunteer’s participation in CS are crucial to keeping it operative in the long term and must be reinforced throughout the whole period with clear feedback and integrative activities with all the participants.
- -
- The programmes must have a minimum budget to cover the permanent scientific team that is responsible coordinating, analysing and establishing communication with the volunteers, as well as for its web design and management.
- -
- Data storage must follow international standards in order to provide good-quality data that can be used overseas or combined in international data repositories.
- -
- Multidisciplinary projects or the combination of multiple CS boost the participation of volunteers simultaneously and strengthen the network of collaborators.
- -
- Scientific publications contribute to the validity and integrity of the project.
- -
- Sampling biases (e.g., species detectability, participant experience or methodological sensibility) need to be openly acknowledged during project design, data acquisition and the resulting analyses and treated accurately in order to avoid misinterpretation of results.
- -
- The use of technology and remote sensing and specific intense training for highly skilled programmes might overcome several of these sampling biases.
- -
- Owing to budget scarcity of public resources for biodiversity conservation, the commitment of private stakeholders—obtaining economic profit from nature—is necessary to guarantee long-term monitoring networks.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magurran, A.E.; Baillie, S.R.; Buckland, S.T.; Dick, J.M.P.; Elston, D.A.; Scott, E.M.; Smith, R.I.; Somerfield, P.J.; Watt, A.D. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 2010, 25, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen Science as an Ecological Research Tool: Challenges and Benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.B.; Shirk, J.; Zuckerberg, B. The invisible prevalence of citizen science in global research: Migratory birds and climate change. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Wagenknecht, K.; Woods, T.; Sanz, F.G.; Gold, M.; Bowser, A.; Rüfenacht, S.; Ceccaroni, L.; Piera, J. EU-Citizen.Science: A Platform for Mainstreaming Citizen Science and Open Science in Europe. Data Intell. 2021, 3, 136–149. [Google Scholar] [CrossRef]
- Chandler, M.; See, L.; Copas, K.; Bonde, A.M.Z.; López, B.C.; Danielsen, F.; Legind, J.K.; Masinde, S.; Miller-Rushing, A.J.; Newman, G.; et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 2017, 213, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Pocock, M.J.O.; Chandler, M.; Bonney, R.; Thornhill, I.; Albin, A.; August, T.; Bachman, S.; Brown, P.M.J.; Cunha, D.G.F.; Grez, A.; et al. A Vision for Global Biodiversity Monitoring with Citizen Science. In Advances in Ecological Research; Elsevier Ltd.: Oxford, UK, 2018; Volume 59, pp. 169–223. [Google Scholar] [CrossRef]
- Rotman, D.; Preece, J.; Hammock, J.; Procita, K.; Hansen, D.; Parr, C.; Lewis, D.; Jacobs, D. Dynamic changes in motivation in collaborative citizen-science projects. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW, Seattle, WA, USA, 11–15 February 2012; pp. 217–226. [Google Scholar] [CrossRef]
- Burgess, H.K.; DeBey, L.B.; Froehlich, H.E.; Schmidt, N.; Theobald, E.J.; Ettinger, A.K.; HilleRisLambers, J.; Tewksbury, J.; Parrish, J.K. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Conserv. 2017, 208, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen science: A developing tool for expanding science knowledge and scientific literacy. Bioscience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Sturm, U.; Schade, S.; Ceccaroni, L.; Gold, M.; Kyba, C.; Claramunt, B.; Haklay, M.; Kasperowski, D.; Albert, A.; Piera, J.; et al. Defining principles for mobile apps and platforms development in citizen science. Res. Ideas Outcomes 2017, 3, e21283. [Google Scholar] [CrossRef]
- Devictor, V.; van Swaay, C.; Brereton, T.; Brotons, L.; Chamberlain, D.; Heliölä, J.; Herrando, S.; Julliard, R.; Kuussaari, M.; Lindström, Å.; et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012 22 2012, 2, 121–124. [Google Scholar] [CrossRef]
- Schmucki, R.; Pe’er, G.; Roy, D.B.; Stefanescu, C.; Van Swaay, C.A.M.; Oliver, T.H.; Kuussaari, M.; Van Strien, A.J.; Ries, L.; Settele, J.; et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 2016, 53, 501–510. [Google Scholar] [CrossRef]
- Stephens, P.A.; Mason, L.R.; Green, R.E.; Gregory, R.D.; Sauer, J.R.; Alison, J.; Aunins, A.; Brotons, L.; Butchart, S.H.M.; Campedelli, T.; et al. Consistent response of bird populations to climate change on two continents. Science 2016, 352, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Basile, M.; Russo, L.F.; Russo, V.G.; Senese, A.; Bernardo, N. Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biol. Conserv. 2021, 256, 109079. [Google Scholar] [CrossRef]
- Pellissier, V.; Schmucki, R.; Pe’er, G.; Aunins, A.; Brereton, T.M.; Brotons, L.; Carnicer, J.; Chodkiewicz, T.; Chylarecki, P.; del Moral, J.C.; et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 2020, 34, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.D.; van Strien, A.; Vorisek, P.; Meyling, A.W.G.; Noble, D.G.; Foppen, R.P.; Gibbons, D.W. Developing indicators for European birds. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 269–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Swaay, C.A.M.; Dennis, E.; Schmucki, R.; Sevilleja, C.; Balalaikins, M.; Botham, M.; Bourn, N.; Brereton, T.; Cancela, J.P.; Carlisle, B.; et al. The EU Butterfly Indicator for Grassland Species: 1990–2017; Technical Report; Butterfly Conservation Europe: Wageningen, The Netherlands, 2019; pp. 1–23. [Google Scholar]
- European Commission. Natura 2000. The Action Plan: For nature, people and the economy. Nat. Biodivers. Newsl. 2017, 16. [Google Scholar]
- European Commission. EU Actions to Improve Environmental Compliance and Governance; COM(2018) 10 Final; European Commission: Brussels, Belgium; Luxembourg, 2018. [Google Scholar]
- European Commission. EU Pollinators Initiative, SWD(2018) 302 Final—SWD(2018); European Commission: Brussels, Belgium; Luxembourg, 2018. [Google Scholar]
- Brotons, L.; Pou, N.; Herrando, S.; Bota, G.; Villero, D.; Garrabou, J.; Ordóñez, J.L.; Anton, M.; Gual, G.; Recoder, L.; et al. Estat de la Natura a Catalunya 2020. Dep. Medi Ambient Sostenibilitat 2020, 1–56. [Google Scholar]
- Thomas, J.A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 339–357. [Google Scholar] [CrossRef]
- Solari, S.; Rodriguez, J.J.; Vivar, E.; Velazco, P.M. A framework for assessment and monitoring of small mammals in a lowland tropical forest. Environ. Monit. Assess. 2002, 76, 89–104. [Google Scholar] [CrossRef]
- Jones, G.; Jacobs, D.S.; Kunz, T.H.; Wilig, M.R.; Racey, P.A. Carpe noctem: The importance of bats as bioindicators. Endanger. Species Res. 2009, 8, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Avenant, N. The potential utility of rodents and other small mammals as indicators of ecosystem “integrity” of South African grasslands. Wildl. Res. 2011, 38, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Drăgoi, C.I.; Faur, M. Monitoring dormice (Gliridae) populations as a method of evaluating the efficiency of biodiversity management tools in Grădiştea Muncelului—Cioclovina Nature Park. Acta Zool. Bulg. 2013, 5, 143–146. [Google Scholar]
- Syaripuddin, K.; Sing, K.W.; Wilson, J.J. Comparison of butterflies, bats and beetles as bioindicators based on four key criteria and DNA barcodes. Trop. Conserv. Sci. 2015, 8, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.; Farashi, A.; Markov, G. Exploring contents of lead and cadmium in tissues of fat dormouse Glis glis (Linnaeus, 1766) (Rodentia: Gliridae) for use in monitoring of environmental pollutants in the Southern Caspian Coast Forests, Iran. Acta Zool. Bulg. 2017, 69, 61–64. [Google Scholar]
- Tuneu-Corral, C.; Puig-Montserrat, X.; Flaquer, C.; Mas, M.; Budinski, I.; López-Baucells, A. Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats’ responses to climatic and land-cover changes. Ecol. Indic. 2020, 110, 105849. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation. The British Butterfly Monitoring Scheme; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993; p. 274. [Google Scholar]
- Torre, I.; Freixas, L.; Arrizabalaga, A.; Díaz, M. The efficiency of two widely used commercial live-traps to develop monitoring protocols for small mammal biodiversity. Ecol. Indic. 2016, 66, 481–487. [Google Scholar] [CrossRef]
- Torre, I.; Raspall, A.; Arrizabalaga, A.; Díaz, M. SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region. Mamm. Biol. 2018, 88, 161–167. [Google Scholar] [CrossRef]
- Freixas, L.; Pertierra, D.; Torre, I.; Arrizabalaga, A. Seguimiento de las poblaciones de lirón gris (Glis glis) en el NE de la Península Ibérica. Galemys 2011, 22, 105–111. [Google Scholar]
- Ferrandiz-Rovira, M.; Freixas, L.; Torre, I.; Míguez, S.; Arrizabalaga, A. Male-biased litter sex ratio in the southernmost Iberian population of edible dormouse: A strategy against isolation? Anim. Biol. 2016, 66, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.F.J.; Aguiar, L.M.S.; Aguirre, L.F.; Baumgarten, J.; Clarke, F.M.; Cosson, J.-F.; Villegas, S.E.; Fahr, J.; Faria, D.; Furey, N.; et al. Accounting for detectability improves estimates of species richness in tropical bat surveys. J. Appl. Ecol. 2011, 48, 777–787. [Google Scholar] [CrossRef]
- Perks, S.J.; Goodenough, A.E. Abiotic and spatiotemporal factors affect activity of European bat species and have implications for detectability for acoustic surveys. Wildl. Biol. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Gorresen, P.M.; Miles, A.C.; Todd, C.M.; Bonaccorso, F.J.; Weller, T.J. Assessing Bat Detectability and Occupancy with Multiple Automated Echolocation Detectors. J. Mammal. 2008, 89, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Hyzy, B.A.; Russell, R.E.; Silvis, A.; Ford, W.M.; Riddle, J.; Russell, K. Occupancy and Detectability of Northern Long-eared Bats in the Lake States Region. Wildl. Soc. Bull. 2020, 44, 732–740. [Google Scholar] [CrossRef]
- Mackenzie, D.L.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling Inferring Patterns and Dynamics of Species Occurrence; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential biodiversity variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.B.; Silva, J.L.; Pardo, I.; Gómez, D.; Tejero, P. Tracking the long-term dynamics of plant diversity in Northeast Spain with a network of volunteers and rangers. Reg. Environ. Chang. 2019, 19, 391–401. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; Cruickshanks, K.L.; Weddle, A.M.; Rowcliffe, J.M.; Brereton, T.M.; Dennis, R.L.H.; Shuker, D.M.; Thomas, C.D. Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol. Evol. 2011, 2, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Harpke, A.; Kühn, E.; Páramo, F.; Settele, J.; Stefanescu, C.; Wiemers, M.; Zhang, Y.; Schweiger, O. Applicability of butterfly transect counts to estimate species richness in different parts of the palaearctic region. Ecol. Indic. 2018, 95, 735–740. [Google Scholar] [CrossRef]
- Melero, Y.; Stefanescu, C.; Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Conserv. 2016, 201, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Jiguet, F. Method learning caused a first-time observer effect in a newly started breeding bird survey. Bird Study 2009, 56, 253–258. [Google Scholar] [CrossRef]
- Adams, A.M.; Jantzen, M.K.; Hamilton, R.M.; Fenton, M.B. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 2012, 3, 992–998. [Google Scholar] [CrossRef]
- Flaquer, C.; Torre, I.; Arrizabalaga, A. Comparison of sampling methods for inventory of bat communities. J. Mammal. 2007, 88, 526–533. [Google Scholar] [CrossRef]
- Lintott, P.R.; Fuentes-Montemayor, E.; Goulson, D.; Park, K.J. Testing the effectiveness of surveying techniques in determining bat community composition within woodland. Wildl. Res. 2014, 40, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Torre, I.; Arrizabalaga, A.; Flaquer, C. Three methods for assessing richness and composition of small mammal communities. J. Mammal. 2004, 85, 524–530. [Google Scholar] [CrossRef]
- Torre, I.; Arrizabalaga, A.; Freixas, L.; Ribas, A.; Flaquer, C.; Diaz, M. Using scats of a generalist carnivore as a tool to monitor small mammal communities in Mediterranean habitats. Basic Appl. Ecol. 2013, 14, 155–164. [Google Scholar] [CrossRef]
- Flowerdew, J.R.; Shore, R.F.; Poulton, S.M.C.; Sparks, T.H. Live trapping to monitor small mammals in Britain. Mamm. Rev. 2004, 34, 31–50. [Google Scholar] [CrossRef]
- Fonturbel, F.E. A methodological approach to assess the small mammal community diversity in the temperate rainforest of Patagonia. Mamm. Biol. 2010, 75, 294–301. [Google Scholar] [CrossRef]
- Battersby, J.E.; Greenwood, J.J.D. Monitoring terrestrial mammals in the UK: Past, present and future, using lessons from the bird world. Mamm. Rev. 2004, 34, 3–29. [Google Scholar] [CrossRef]
- Kryštufek, B.; Hudoklin, A.; Pavlin, D. Population biology of the edible dormouse Glis glis in a mixed montane forest in central Slovenia over three years. Acta Zool. Acad. Sci. Hung. 2003, 49, 99–108. [Google Scholar]
- Bright, P.W.; Morris, P.; Mitchell-Jones, T. The Dormouse Conservation Handbook, 2nd ed.; English Nature: Peterborough, UK, 2006.
- Beauvais, G.P.; Buskirk, S.W. Modifying estimates of sampling effort to account for sprung traps. Wildl. Soc. Bull. 1999, 27, 39–43. [Google Scholar] [CrossRef]
- Torre, I.; Raspall, A.; Arrizabalaga, A.; Díaz, M. Evaluating trap performance and volunteers’ experience in small mammal monitoring programs based on citizen science: The SEMICE case study. Mamm. Biol. 2019, 95, 26–30. [Google Scholar] [CrossRef]
- Barlow, K.E.; Briggs, P.A.; Haysom, K.A.; Hutson, A.M.; Lechiara, N.L.; Racey, P.A.; Walsh, A.L.; Langton, S.D. Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain. Biol. Conserv. 2015, 182, 14–26. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 2003, 9, 1494–1506. [Google Scholar] [CrossRef]
- Donoso, I.; Stefanescu, C.; Martínez-Abraín, A.; Traveset, A. Phenological asynchrony in plant–butterfly interactions associated with climate: A community-wide perspective. Oikos 2016, 125, 1434–1444. [Google Scholar] [CrossRef] [Green Version]
- Herrando, S.; Titeux, N.; Brotons, L.; Anton, M.; Ubach, A.; Villero, D.; García-Barros, E.; Munguira, M.L.; Godinho, C.; Stefanescu, C. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 2019, 9, 5680. [Google Scholar] [CrossRef]
- Colom, P.; Traveset, A.; Carreras, D.; Stefanescu, C. Spatio-temporal responses of butterflies to global warming on a Mediterranean island over two decades. Ecol. Entomol. 2021, 46, 262–272. [Google Scholar] [CrossRef]
- Lee, M.S.; Comas, J.; Stefanescu, C.; Albajes, R. The Catalan butterfly monitoring scheme has the capacity to detect effects of modifying agricultural practices. Ecosphere 2020, 11, e03004. [Google Scholar] [CrossRef]
- Ubach, A.; Páramo, F.; Gutiérrez, C.; Stefanescu, C. Vegetation encroachment drives changes in the composition of butterfly assemblages and species loss in Mediterranean ecosystems. Insect Conserv. Divers. 2020, 13, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Colom, P.; Traveset, A.; Stefanescu, C. Long-term effects of abandonment and restoration of Mediterranean meadows on butterfly-plant interactions. J. Insect Conserv. 2021, 25, 383–393. [Google Scholar] [CrossRef]
- Stefanescu, C.; Carnicer, J.; Penuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography (Cop.) 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Stefanescu, C.; Torre, I.; Jubany, J.; Paramo, F. Recent trends in butterfly populations from north-east Spain and Andorra in the light of habitat and climate change. J. Insect Conserv. 2011, 15, 83–93. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Butterflies highlight the conservation value of hay meadows highly threatened by land-use changes in a protected Mediterranean area. Biol. Conserv. 2005, 126, 234–246. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Rapid changes in butterfly communities following the abandonment of grasslands: A case study. Insect Conserv. Divers. 2009, 2, 261–269. [Google Scholar] [CrossRef]
- Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 2001, 26, 525–536. [Google Scholar] [CrossRef]
- Carnicer, J.; Stefanescu, C.; Vives-Ingla, M.; López, C.; Cortizas, S.; Wheat, C.; Vila, R.; Llusià, J.; Peñuelas, J. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. J. Anim. Ecol. 2019, 88, 376–391. [Google Scholar] [CrossRef]
- Hu, G.; Stefanescu, C.; Oliver, T.H.; Roy, D.B.; Brereton, T.; Van Swaay, C.; Reynolds, D.R.; Chapman, J.W. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Natl. Acad. Sci. USA 2021, 118, e2102762118. [Google Scholar] [CrossRef]
- Stefanescu, C.; Alarcón, M.; Àvila, A. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. J. Anim. Ecol. 2007, 76, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Suggitt, A.J.; Stefanescu, C.; Páramo, F.; Oliver, T.; Anderson, B.J.; Hill, J.K.; Roy, D.B.; Brereton, T.; Thomas, C.D. Habitat associations of species show consistent but weak responses to climate. Biol. Lett. 2012, 8, 590–593. [Google Scholar] [CrossRef]
- Mills, S.C.; Oliver, T.H.; Bradbury, R.B.; Gregory, R.D.; Brereton, T.; Kühn, E.; Kuussaari, M.; Musche, M.; Roy, D.B.; Schmucki, R.; et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 2017, 26, 1374–1385. [Google Scholar] [CrossRef] [Green Version]
- Montauban, C.; Mas, M.; Tuneu-Corral, C.; Wangensteen, O.S.; Budinski, I.; Martí-Carreras, J.; Flaquer, C.; Puig-Montserrat, X.; López-Baucells, A. Bat echolocation plasticity in allopatry: A call for caution in acoustic identification of Pipistrellus sp. Behav. Ecol. Sociobiol. 2021, 75, 70. [Google Scholar] [CrossRef]
- Revilla-Martín, N.; Budinski, I.; Puig-Montserrat, X.; Flaquer, C.; López-Baucells, A. Monitoring cave-dwelling bats using remote passive acoustic detectors: A new approach for cave monitoring. Bioacoustics 2020, 30, 527–542. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Mas, M.; Flaquer, C.; Tuneu-Corral, C.; López-Baucells, A. Benefits of organic olive farming for the conservation of gleaning bats. Agric. Ecosyst. Environ. 2021, 313, 107361. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Flaquer, C.; Gómez-Aguilera, N.; Burgas, A.; Mas, M.; Tuneu, C.; Marquès, E.; López-Baucells, A. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 2020, 76, 3759–3769. [Google Scholar] [CrossRef] [PubMed]
- Montauban, C.; Mas, M.; Wangensteen, O.S.; Sarto i Monteys, V.; Fornós, D.G.; Mola, X.F.; López-Baucells, A. Bats as natural samplers: First record of the invasive pest rice water weevil Lissorhoptrus oryzophilus in the Iberian Peninsula. Crop Prot. 2021, 141, 105427. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Torre, I.; López-Baucells, A.; Guerrieri, E.; Monti, M.M.; Ràfols-García, R.; Ferrer, X.; Gisbert, D.; Flaquer, C. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 2015, 80, 237–245. [Google Scholar] [CrossRef]
- Mas, M.; Flaquer, C.; Rebelo, H.; López-Baucells, A. Bats and wetlands: Synthesising gaps in current knowledge and future opportunities for conservation. Mamm. Rev. 2021, 51, 369–384. [Google Scholar] [CrossRef]
- Bideguren, G.M.; López-Baucells, A.; Puig-Montserrat, X.; Mas, M.; Porres, X.; Flaquer, C. Bat boxes and climate change: Testing the risk of over-heating in the Mediterranean region. Biodivers. Conserv. 2018, 28, 21–35. [Google Scholar] [CrossRef]
- Flaquer, C.; Puig, X.; López-Baucells, A.; Torre, I.; Freixas, L.; Mas, M.; Porres, X.; Arrizabalaga, A. Could overheating turn bat boxes into death traps? Barbastella 2014, 7, 2014. [Google Scholar] [CrossRef]
- López-Baucells, A.; Puig-Montserrat, X.; Torre, I.; Freixas, L.; Mas, M.; Arrizabalaga, A.; Flaquer, C. Bat boxes in urban non-native forests: A popular practice that should be reconsidered. Urban Ecosyst. 2017, 20, 217–225. [Google Scholar] [CrossRef]
- López-Baucells, A.; Casanova, L.; Puig-Montserrat, X.; Espinal, A.; Páramo, F.; Flaquer, C. Evaluating the use of Myotis daubentonii as an ecological indicator in Mediterranean riparian habitats. Ecol. Indic. 2017, 74, 19–27. [Google Scholar] [CrossRef]
- Witsenburg, F.; Clément, L.; López-Baucells, A.; Palmeirim, J.; Pavlinić, I.; Scaravelli, D.; Ševčík, M.; Dutoit, L.; Salamin, N.; Goudet, J.; et al. How a haemosporidian parasite of bats gets around: The genetic structure of a parasite, vector and host compared. Mol. Ecol. 2015, 24, 926–940. [Google Scholar] [CrossRef] [Green Version]
- López-Baucells, A.; Flaquer, C.; Puig-Montserrat, X.; Freixas, L.; Mohamed, L. Actualización del inventario de quirópteros y refugios en Ceuta: Primera cita de Pipistrellus pygmaeus en el norte de África. Barbastella 2012, 5, 43–50. [Google Scholar]
- López-Baucells, A.; Mas, M.; Puig-Montserrat, X.; Flaquer, C. Hypopigmentation in vespertilionid bats: The first record of a leucistic soprano pipistrelle Pipistrellus pygmaeus. Barbastella 2013, 6, 66–72. [Google Scholar] [CrossRef]
- Stefanescu, C.; Soldevila, A.; Gutiérrez, C.; Torre, I.; Ubach, A.; Miralles, M. Explosions demogràfiques de l’eruga peluda del suro, Lymantria dispar (Linnaeus, 1758), als boscos del Montnegre el 2019 i 2020: Possibles causes, impactes i idoneïtat dels tractaments per combatre la plaga. Butlletí Inst. Catalana d’Història Nat. 2020, 84, 267–279. [Google Scholar]
- Oro, D.; Sanz-Aguilar, A.; Carbonell, F.; Grajera, J.; Torre, I. Multi-species prey dynamics influences local survival in resident and wintering generalist predators. Oecologia 2021, in press. [Google Scholar]
- Oro, D.; Freixas, L. Flickering body temperature anticipates criticality in hibernation dynamics. R. Soc. Open Sci. 2021, 8, 201571. [Google Scholar] [CrossRef]
- Parsons, A.W.; Goforth, C.; Costello, R.; Kays, R. The value of citizen science for ecological monitoring of mammals. PeerJ 2018, 2018, e4536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, C.; Buesching, C.D.; Macdonald, D.W. Validating mammal monitoring methods and assessing the performance of volunteers in wildlife conservation: “Sed quis custodiet ipsos custodies?”. Biol. Conserv. 2003, 113, 189–197. [Google Scholar] [CrossRef]
- McShea, W.J.; Forrester, T.; Costello, R.; He, Z.; Kays, R. Volunteer-run cameras as distributed sensors for macrosystem mammal research. Landsc. Ecol. 2016, 31, 55–66. [Google Scholar] [CrossRef]
- Coronado, A.; Flaquer, C.; Puig-Montserrat, X.; Barthe, E.; Mas, M.; Arrizabalaga, A.; López-Baucells, A. The role of secondary trees in Mediterranean mature forests for the conservation of the forest-dwelling bat Myotis alcathoe. Are current logging guidelines appropriate? Hystrix Ital. J. Mammal. 2017, 28, 240–246. [Google Scholar] [CrossRef]
- Herrando, S.; Brotons, L.; Antón, M.; Páramo, F.; Villero, D.; Titeux, N.; Quesada, J.; Stefanescu, C. Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environ. Conserv. 2016, 43, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.H.E.; Pollard, C.R.J.; Chimalakonda, D.; Guerrero, A.M.; Kerr-Smith, C.; Milheiras, S.A.G.; Roberts, M.; Ngafack, P.R.; Bunnefeld, N. Wicked conflict: Using wicked problem thinking for holistic management of conservation conflict. Conserv. Lett. 2018, 11, e12460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvet-Mir, L.; Maestre-Andrés, S.; Molina, J.L.; van den Bergh, J. Participation in protected areas: A social network case study in catalonia, Spain. Ecol. Soc. 2015, 20, 45. [Google Scholar] [CrossRef] [Green Version]
- Maestre-Andrés, S.; Calvet-Mir, L.; Apostolopoulou, E. Unravelling stakeholder participation under conditions of neoliberal biodiversity governance in Catalonia, Spain. Environ. Plan. C Polit. Sp. 2018, 36, 1299–1318. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sikes, R.S. Animal Care and use Committee of the American Society of Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef]
CBMS | BATS | SEMICE | DORMOUSE | ||||||
---|---|---|---|---|---|---|---|---|---|
EBV Class | Essential Biodiversity Variables (EBV, Chandler et al. 2017) | Primary | Secondary | Primary | Secondary | Primary | Secondary | Primary | Secondary |
Genetic composition | Co-ancestry | ||||||||
Allelic diversity | yes | ||||||||
Population genetic differentiation | yes | yes | yes | ||||||
Breed and variety diversity | yes | ||||||||
Species populations | Distribution | yes | yes | yes | yes | ||||
Abundance | yes | yes | yes | yes | |||||
Structure (age) | yes | yes | yes | ||||||
Species traits | Phenology | yes | yes | yes | yes | ||||
Body mass | yes | yes | yes | ||||||
Natal dispersal distance | yes | ||||||||
Migratory behaviour | yes | yes | yes | ||||||
Demographic traits | yes | yes | yes | yes | |||||
Physiological traits | yes | yes | |||||||
Community composition | Diversity | yes | yes | yes | |||||
Interactions | yes | yes | yes | ||||||
Ecosystem function and structure | Net primary productivity | ||||||||
Secondary productivity | yes | ||||||||
Nutrient retention | |||||||||
Disturbance regime | yes | yes | |||||||
Ecosystem structure | Habitat structure | yes | yes | yes | yes | ||||
Ecosystem extent and fragmentation | yes | yes | yes | yes | |||||
Ecosystem composition by functional type | |||||||||
TOTAL | 9 | 1 | 9 | 3 | 9 | 3 | 11 | 5 |
CBMS | BATS | SEMICE | DORMOUSE | ||
---|---|---|---|---|---|
STAFF | Scientific Coordinator | 1 | 1 | 1 | 1 |
Technical Coordinator | 2 | 1 | 1 | 0 | |
SUPPORT | Field technicians | 3 | 3 | 4 | 0 |
Others | 1 | 3 | 1 | 0 | |
Web Manager | 1 | 1 | 1 | 1 | |
PARTICIPANTS | People involved | 300 | 220 | 270 | 155 |
RESEARCH | Peer reviewed articles | 43 | 16 | 8 | 2 |
EDUCATION | Doctoral Theses | 0 | 2 | 0 | 0 |
Masters and Degrees | 5 | 4 | 5 | 3 | |
WEBS & SOCIAL MEDIA | Web | www.catalanbms.org | www.batmonitoring.org | www.semice.org | www.dormice.org |
@catalanbms | @Ratpenats_Cat | @ProjecteLiro | |||
@Ratpenats_Cat | |||||
@Ratpenats.Cat |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, I.; López-Baucells, A.; Stefanescu, C.; Freixas, L.; Flaquer, C.; Bartrina, C.; Coronado, A.; López-Bosch, D.; Mas, M.; Míguez, S.; et al. Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions. Diversity 2021, 13, 454. https://doi.org/10.3390/d13090454
Torre I, López-Baucells A, Stefanescu C, Freixas L, Flaquer C, Bartrina C, Coronado A, López-Bosch D, Mas M, Míguez S, et al. Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions. Diversity. 2021; 13(9):454. https://doi.org/10.3390/d13090454
Chicago/Turabian StyleTorre, Ignasi, Adrià López-Baucells, Constantí Stefanescu, Lídia Freixas, Carles Flaquer, Carme Bartrina, Alba Coronado, David López-Bosch, Maria Mas, Sílvia Míguez, and et al. 2021. "Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions" Diversity 13, no. 9: 454. https://doi.org/10.3390/d13090454
APA StyleTorre, I., López-Baucells, A., Stefanescu, C., Freixas, L., Flaquer, C., Bartrina, C., Coronado, A., López-Bosch, D., Mas, M., Míguez, S., Muñoz, J., Páramo, F., Puig-Montserrat, X., Tuneu-Corral, C., Ubach, A., & Arrizabalaga, A. (2021). Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions. Diversity, 13(9), 454. https://doi.org/10.3390/d13090454