Responses of Benthic Macroinvertebrate Communities of Two Tropical, High-Mountain Lakes to Climate Change and Deacidification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Statistical Analysis
3. Results
3.1. The Environment
3.2. The Benthic Macroinvertebrate Community
4. Discussion
4.1. The Environment
4.2. The Benthic Macroinvertebrate Community
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, C.E.; Dodds, W.; Kratz, T.K.; Palmer, M.A. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 2008, 6, 247–254. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Catalan, J.; Rondón, D. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J. Limnol. 2016, 75, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Boggero, A.; Barbieri, A.; De Jong, J.; Marchetto, A.; Mosello, R. Chemistry and critical loads of Alpine lakes in Canton Ticino (Southern Central Alps). Aquat. Sci. 1998, 60, 300–315. [Google Scholar] [CrossRef]
- Curtis, C.J.; Barbieri, A.; Camarero, L.; Gabathuler, M.; Galas, J.; Hanselmann, K.; Kopacek, J.; Mosello, R.; Nickus, U.; Rose, N.; et al. Application of static critical load models for acidity to high mountain lakes in Europe. Water Air Soil Pollut. 2002, 2, 115–126. [Google Scholar] [CrossRef]
- Marchetto, A.; Mosello, R.; Psenner, R.; Barbieri, A.; Bendetta, G.; Tait, D.; Tartari, G.A. Evaluation of the level of acidification and the critical loads for Alpine lakes. Ambio 1994, 23, 150–154. [Google Scholar]
- Pastorino, P.; Prearo, M. High-mountain lakes, indicators of global change: Ecological characterization and environmental pressures. Diversity 2020, 12, 260. [Google Scholar] [CrossRef]
- Payne, A.I. The Ecology of Tropical Lakes and Rivers, 1st ed.; Wiley: New York, NY, USA, 1991; 310p, ISBN 0471905240. [Google Scholar]
- Lewis, W.M. Tropical lakes: How latitude makes a diference. In Perspectives in Tropical Limnology; Schiemer, F., Boland, K.T., Eds.; SPB Academic Publishing bv: Amsterdam, The Netherlands, 1996; pp. 43–64. [Google Scholar]
- Löffler, H. The limnology of tropical high-mountain lakes. Verh. Int. Ver. Theor. Angew. Limnol. 1964, 15, 176–193. [Google Scholar] [CrossRef]
- Lewis, W.M.J. Radar image of one dimension rough surface with buried object. Lakes Reserv. Res. Manag. 2000, 5, 35–48. [Google Scholar] [CrossRef]
- Aguilera, X.; Lazzaro, X.; Coronel, J.S. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Photochem. Photobiol. Sci. 2013, 12, 1649–1657. [Google Scholar] [CrossRef]
- Eggermont, H.; Russell, J.M.; Schettler, G.; Van Damme, K.; Bessems, I.; Verschuren, D. Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda-DR Congo). Hydrobiologia 2007, 592, 151–173. [Google Scholar] [CrossRef]
- Fetahi, T.; Mengistou, S.; Schagerl, M. Zooplankton community structure and ecology of the tropical-highland Lake Hayq, Ethiopia. Limnologica 2011, 41, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Rietti-Shati, M.; Yam, R.; Karlen, W.; Shemesh, A. Stable isotope composition of tropical high-attitude fresh-waters on Mt. Kenya, Equatorial East Africa. Chem. Geol. 2000, 166, 341–350. [Google Scholar] [CrossRef]
- Löffler, H. Contribution to the Limnology of High Montain Lakes in Central America. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1972, 57, 397–408. [Google Scholar] [CrossRef]
- Rivera-R., C.; Solano-M., D.; Zapata-A., A.; Donato-R., J. Phytoplankton diversity in a tropical high mountain lake. Verh. Int. Ver. Theor. Angew. Limnol. 2005, 29, 418–421. [Google Scholar] [CrossRef]
- Widmer, C.; Kittel, T.; Richerson, P.J. A survey of the biological limnology of Lake Titicaca. Verh. Int. Ver. Theor. Angew. Limnol. 1975, 19, 1504–1510. [Google Scholar] [CrossRef]
- Huamán, P.; Mariano, M.; Chanco, M.; Montoya, H. Estructura del Macrobentos de la laguna de Paca, Junin. Rev. Peru. Biol. 2002, 9, 29–38. [Google Scholar] [CrossRef]
- Tapia, L.; Sánchez, T.; Baylón, M.; Jara, E.; Arteaga, C.; Maceda, D.; Salvatierra, A. Invertebrados bentónicos como bioindicadores de calidad de agua en Lagunas Altoandinas del Perú. Ecol. Apl. 2018, 17, 149–163. [Google Scholar] [CrossRef]
- Alcocer, J.; Oseguera, L.A.; Escobar, E.; Peralta, L.; Lugo, A. Biomass and Water in Two Phytoplankton Chemistry in Central Lakes Mexico Tropical. Artic Antart. Alp. Res. 2004, 36, 342–346. [Google Scholar] [CrossRef] [Green Version]
- García-Palomo, A.; Macías, J.L.; Arce, J.L.; Capra, L.; Garduño, V.H.; Espíndola, J.M. Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Geol. Soc. Am. Map Chart Ser. 2002, MCH089, 1–26. [Google Scholar]
- Bloomfield, K.; Valastro, S. Late Pleistocene Eruptive History of Nevado de Toluca Volcano, Central Mexico. Bull. Volcanol. 1974, 85, 901–906. [Google Scholar] [CrossRef]
- Alcocer, J.; Roberson, J.; Oseguera, L.A.; Lewis, W.M. Rhythmic episodes of heating and cooling control thermal stratification of two tropical high mountain lakes. Aquat. Sci. 2020, 82, 1–11. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980. [Google Scholar]
- Santisteban, J.I.; Mediavilla, R.; López-Pamo, E.; Dabrio, C.J.; Ruiz, Z.M.B.; Gil, G.M.J.; Silvino, C.; Martínez-Alfaro, P.E. Loss on ignition: A qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J. Paleolimnol. 2004, 32, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology: Lake and River Escosystems, 3rd ed.; Elsevier Science: San Diego, CA, USA, 2001; 1006p. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. (Eds.) Standar Methods for the Examination of Water and Wastewater; AWWA: New York, NY, USA, 2017; 1193p. [Google Scholar]
- Ward, H.B.; Whipple, G.C. Fresh-Water Biology, 2nd ed.; Edmondson, W.T., Ed.; John Wiley & Sons.: New York, NY, USA, 1959. [Google Scholar]
- Merritt, R.; Cummins, K.; Berg, M.B. An Introduction to the Aquatic Insects of North America, 5th ed.; Kendall Hunt Pub Co: Dubuque, IA, USA, 2019; 1498p. [Google Scholar]
- Pennak, R.W. Fresh-Water Invertebrates of the United States; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Throp, J.H.; Covich, A.P. Ecology and Classification of North American Freshwater Invertebrates; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Brinkhurst, R.O.; Marchese, R.M. Guía Para la Identificación de Oligoquetos Acuáticos Continentales de Sud y Centroamerica, 2nd ed.; Asociación Ciencias Naturales del Litoral: Santa Fe, Argentina, 1992. [Google Scholar]
- Hiltunen, J.K.; Klemm, D.J. A Guide to the Nadidae (Annelida: Clitellata: Oligochaeta) of North America; EPA: Cincinnati, OH, USA, 1980; 64p. [Google Scholar]
- Stimpson, K.; Donald, J.K.; Hiltunen, J. A Guide to the Freshwater Tubificidae (Annelida: Clitellata: Oligochaeta) of North America; Environmental Monitoring and Support Laboratory, Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1982; 70p. [Google Scholar]
- Mason, W.T.J. An Introduction to the Identification of Chironomid Larvae; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1973; 96p.
- Wiederholm, T. Chironomidae of the Holarctic Region: Keys and Diagnoses; Entomological Society of Lund: Lund, Sweden, 1989; 457p. [Google Scholar]
- Moreno, J.; Massaferro, J.; Caballero, M.; Oseguera, L. First record of the Pseudodiamesa branickii species-group (Diptera: Chironomidae: Diamesinae) from central Mexico. Rev. Mex. Biodivers. 2020, 91, 1–6. [Google Scholar] [CrossRef]
- Margalef, R. Limnología; Ediciones Omega, S.A.: Barcelona, Spain, 1983; 1010p. [Google Scholar]
- Weber, C.I. Biological Field and Laboratory Methods for Measuring the Quality of Surface Water and Effluents; National Environmental Research Center, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 1973; 231p. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013; 1585p. [Google Scholar]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Paris, France, 2019; in press; Available online: https://www.ipcc.ch/srocc/ (accessed on 28 April 2021).
- Held, I.M.; Soden, B.J. Robust responses of the Sahelian hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Schindler, D.W. Climate change: Sentinels of change. Science 2009, 323, 887–888. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Easterling, D.R.; Hayhoe, K.; Knutson, T.; Kopp, R.E.; Kossin, J.P.; Kunkel, K.E.; LeGrande, A.N.; Mears, C.; Sweet, W.V.; et al. Our globally changing climate. In Climate Science Special Report: Fourth National Climate Assessment; Webbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 35–72. [Google Scholar]
- Charles, D.F. Effects of acidic deposition on North American lakes: Palaeolimnological evidence from diatoms and chrysophytes. Philos. Trans.-R. Soc. Lond. B 1990, 327, 403–412. [Google Scholar] [CrossRef]
- Mosello, R.; Marchetto, A.; Boggero, A.; Brizzio, M.C.; Tartari, G.A.; Rogora, M. Pluriannual evolution of the hydrochemistry of two Alpine lakes (Lake Paione Inferiore and Lake Paione Superiore, Ossola Valley) in relation to atmospheric loads. J. Limnol. 1999, 58, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.M.; Dukett, J.; Houck, N.; Lawrence, G.B. A Long-Term Monitoring Program for Evaluating Changes in Water Quality in Selected Adirondack Waters; New York State Energy Research and Development Authority: New York, NY, USA, 2012; 43p. [Google Scholar]
- Driscoll, C.T.; Driscoll, K.M.; Roy, K.M.; Mitchell, M.J. Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition. Environ. Sci. Technol. 2003, 37, 2036–2042. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, A.; Joranger, E.; Semb, A. The Contribution of Nitrogen to Acidification; The National Environmental Monitoring Programme Report 408/90; State Pollution Control Authority: Oslo, Norway, 1990. [Google Scholar]
- Marchetto, A.; Mosello, R.; Rogora, M.; Manca, M.; Boggero, A.; Morabito, G.; Musazzi, S.; Tartari, G.A.; Nocentini, A.M.; Pugnetti, A.; et al. The chemical and biological response of two remote mountain lakes in the Southern Central Alps (Italy) to twenty years of changing physical and chemical climate. J. Limnol. 2004, 63, 77–89. [Google Scholar] [CrossRef]
- Rogora, M.; Marchetto, A.; Mosello, R. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment. Hydrol. Earth Syst. Sci. 2001, 5, 379–390. [Google Scholar] [CrossRef] [Green Version]
- The MOLAR water Chemistry Group The MOLAR project: Atmospheric deposition and lake water chemistry. J. Limnol. 1999, 58, 88–106. [CrossRef]
- Ibarra-Morales, D.; Alcocer, J.; Oseguera, L.A.; Sosa-Echeverría, R. Bulk Deposition and Main Ionic Composition in a Remote Tropical Region: Nevado de Toluca, Mexico. Water Air Soil Pollut. 2020, 231, 413, 1–13. [Google Scholar] [CrossRef]
- Rieradevall, M.; Jiménez, M.; Prat, N. The zoobenthos of six remote high mountain lakes in Spain and Portugal. Verh. Int. Ver. Theor. Angew. Limnol. 1998, 26, 2132–2136. [Google Scholar] [CrossRef]
- Kownacki, A.; Galas, J.; Dumnicka, E.; Mielewczyk, S. Invertebrate communities in permanent and temporary high mountain lakes (Tatra Mts). Ann. Limnol. 2000, 36, 181–188. [Google Scholar] [CrossRef]
- Hamerlík, L.; Svitok, M.; Novikmec, M.; Očadlík, M.; Bitušík, P. Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude waterbodies: Do ponds differ from lakes? Hydrobiologia 2014, 723, 41–52. [Google Scholar] [CrossRef]
- Füreder, L.; Ettinger, R.; Boggero, A.; Thaler, B.; Thies, H. Macroinvertebrate diversity in Alpine lakes: Effects of altitude and catchment properties. Hydrobiologia 2006, 562, 123–144. [Google Scholar] [CrossRef]
- Catalan, J.; Camarero, L.; Felip, M.; Pla, S.; Ventura, M.; Buchaca, T.; Bartumeus, F.; De Mendoza, G.; Miró, A.; Casamayor, E.O.; et al. High mountain lakes: Extreme habitats and witnesses of environmental changes. Limnetica 2006, 25, 551–584. [Google Scholar]
- Krno, I.; Šporka, F.; Galas, J.; Hamerlík, L.; Zaťovičová, Z.; Bitušík, P. Littoral benthic macroinvertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia 2006, 61, S147–S166. [Google Scholar] [CrossRef]
- Steingruber, S.M.; Boggero, A.; Caissutti, C.P.; Dumnicka, E.; Colombo, L. Can we use macroinvertebrates as indicators of acidification of high-altitude Alpine lakes? Boll. Della Soc. Ticin. Sci. Nat. 2013, 101, 23–34. [Google Scholar]
- Allard, M.; Moreau, G. Effects of experimental acidification on a lotic macroinvertebrate community. Hidrobiologia 1987, 144, 37–49. [Google Scholar] [CrossRef]
- Collins, N.C.; Zimmerman, A.P.; Knoechel, R. Comparisons of benthic infauna and epifauna biomasses in acidified and non-acidified Ontario lakes. In Proceedings of the Effects of Acidic Precipitation on Benthos; Singer, R., Ed.; The North American Benthological Society: Hamilton, NY, USA, 1980; pp. 35–48. [Google Scholar]
- Vrba, J.; Bojková, J.; Chvojka, P.; Fott, J.; Kopáček, J.; Macek, M.; Nedbalová, L.; Papáček, M.; Rádková, V.; Sacherová, V.; et al. Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshw. Biol. 2016, 61, 376–395. [Google Scholar] [CrossRef]
- Dermott, R.M. Benthic fauna in a series of lakes displaying a gradient of pH. Hydrobiologia 1985, 128, 31–38. [Google Scholar] [CrossRef]
- Barmuta, L.A.; Cooper, S.D.; Hamilton, S.K.; Kratz, K.W.; Melack, J.M. Responses of zooplankton and zoobenthos to experimental acidification in a high-elevation lake (Sierra Nevada, California, U.S.A.). Freshw. Biol. 1990, 23, 571–586. [Google Scholar] [CrossRef]
- Vranovský, M.; Krno, I.; Šporka, F.; Tomajka, J. The effect of anthropogenic acidification on the hydrofauna of the lakes of the West Tatra Mountains (Slovakia). Hydrobiologia 1994, 274, 163–170. [Google Scholar] [CrossRef]
Variable | Unit | El Sol | La Luna | ||
---|---|---|---|---|---|
2000–2001 | 2017–2018 | 2000–2001 | 2017–2018 | ||
Air temperature | °C | 4.2 ± 1.0 | 5.0 ± 1.1 | 4.2 ± 1.0 | 5.0 ± 1.1 |
Annual rainfall | mm | 2367 | 2521 | 2367 | 2521 |
Monthly rainfall | mm | 107.6 ± 100.3 | 109.3 ± 97.7 | 107.6 ± 100.3 | 109.3 ± 97.7 |
ZMAX | m | 13.5 | 12.0 | 11.0 | 9.5 |
ZSD | m | 4.6 ± 1.0 | 4.1 ± 0.3 | 10.2 ± 0.4 a | 8.8 ± 0.4 a |
Water temperature | °C | 8.58 ± 1.96 | 9.3 ± 1.60 | 8.43 ± 1.73 | 9.10 ± 2.10 |
Average pH b | 5.28 | 6.13 | 4.65 | 4.76 | |
pH range | 4.92–6.13 | 5.07–9.63 | 4.51–5.42 | 4.01–6.62 | |
DO | mg L−1 | 6.7 ± 0.8 | 6.0 ± 2.0 | 6.7 ± 0.8 | 6.9 ± 0.3 |
K25 | µS cm−1 | 16 ± 1 | 63 ± 20 | 14 ± 1 | 12 ± 3 |
OM | % | 12 ± 3 | 14 ± 3 | 18 ± 4 | 16 ± 3 |
Texture | mm | 0.002–0.05 | 0.002–0.05 | 0.002–0.05 | 0.002–0.05 |
Substrate type | fine silt | fine silt | fine silt | fine silt |
Family | Species | El Sol | La Luna | ||
---|---|---|---|---|---|
2000–2001 | 2017–2018 | 2000–2001 | 2017–2018 | ||
Naididae | Nais pardalis Piguet, 1906 | X | X | - | X |
Limnodrilus hoffmeisteri Claparède, 1862 | X | X | X | X | |
Tubifex tubifex Muller, 1774 | X | - | - | - | |
Lumbriculidae | Lumbriculus variegatus Müller, 1774 | X | - | - | X |
Chironomidae | Pseudodiamesa branickii Makarchenko & Makarchenko, 1999 | X | - | X | X |
Hydridae | Hydra vulgaris Pallas, 1766 | X | X | - | - |
Physidae | Physa sp. Draparnaud, 1801 | - | X | - | - |
Spaeriidae | Pisidium casertanum Poli, 1791 | X | - | - | - |
Variable | Unit | El Sol | La Luna | ||
---|---|---|---|---|---|
2000–2001 | 2017–2018 | 2000–2001 | 2017–2018 | ||
S | species | 7 | 4 | 2 | 4 |
Avg S | species | 5 ± 1 | 2 ± 1 | 2 ± 0 | 2 ± 1 |
Avg Density | ind m−2 | 6541 ± 7414 | 2453 ± 2949 | 7955 ± 7349 | 783 ± 1042 |
Avg Biomass | mg C m−2 | 47.49 ± 54.28 | 3.63 ± 4.43 | 50.44 ± 54.33 | 3.69 ± 7.35 |
2000–2001 | 2017–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rec. | Density | Biomass | Rec. | Density | Biomass | |||||
El Sol | % | ind m−2 | % | mg C m−2 | % | % | ind m−2 | % | mg C m−2 | % |
N. pardalis | 41.7 | 19 ± 47 | 0.3 | 0.03729 ± 0.10008 | 0.1 | 75.0 | 1018 ± 1999 | 41.5 | 0.00144 ± 0.00290 | 39.7 |
L. hoffmeisteri | 66.7 | 51 ± 106 | 0.8 | 0.23986 ± 046451 | 0.5 | 83.3 | 1385 ± 2101 | 56.5 | 0.00213 ± 0.00345 | 58.8 |
T. tubifex | 100 | 4807 ± 6557 | 73.5 | 25.22899 ± 42.68366 | 53.1 | - | - | - | - | - |
L. variegatus | 91.7 | 1068 ± 1426 | 16.3 | 13.22973 ± 18.86350 | 27.9 | - | - | - | - | - |
P. branickii | 8.3 | 1 ± 7 | 0.0 | 0.00561 ± 0.03367 | 0.0 | - | - | - | - | - |
H. vulgaris | 58.3 | 25 ± 74 | 0.4 | 0.00798 ± 0.01785 | 0.0 | 16.7 | 16 ± 56 | 0.6 | 0.00002 ± 0.00007 | 0.5 |
Physa sp. | - | - | - | - | - | 16.7 | 33 ± 147 | 1.4 | 0.00004 ± 0.00017 | 1.0 |
P. casertanum | 100 | 571 ± 754 | 8.7 | 8.73803 ± 11.44316 | 18.4 | - | - | - | - | - |
La Luna | ||||||||||
N. pardalis | - | - | - | - | - | 33.3 | 40 ± 115 | 5.0 | 0.00031 ± 0.00145 | 8.3 |
L. hoffmeisteri | 100 | 7808 ± 7270 | 98.2 | 47.79901 ± 53.47725 | 94.8 | 91.7 | 734 ± 1038 | 93.3 | 0.00309 ± 0.00661 | 83.7 |
P. branickii | 100 | 146 ± 162 | 1.8 | 2.64082 ± 3.23424 | 5.2 | 25.0 | 10 ± 26 | 1.3 | 0.00018 ± 0.00051 | 4.8 |
L. variegatus | - | - | - | - | - | 8.3 | 4 ± 22 | 0.4 | 0.00012 ± 0.00070 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcocer, J.; Oseguera, L.A.; Ibarra-Morales, D.; Escobar, E.; García-Cid, L. Responses of Benthic Macroinvertebrate Communities of Two Tropical, High-Mountain Lakes to Climate Change and Deacidification. Diversity 2021, 13, 243. https://doi.org/10.3390/d13060243
Alcocer J, Oseguera LA, Ibarra-Morales D, Escobar E, García-Cid L. Responses of Benthic Macroinvertebrate Communities of Two Tropical, High-Mountain Lakes to Climate Change and Deacidification. Diversity. 2021; 13(6):243. https://doi.org/10.3390/d13060243
Chicago/Turabian StyleAlcocer, Javier, Luis A. Oseguera, Diana Ibarra-Morales, Elva Escobar, and Lucero García-Cid. 2021. "Responses of Benthic Macroinvertebrate Communities of Two Tropical, High-Mountain Lakes to Climate Change and Deacidification" Diversity 13, no. 6: 243. https://doi.org/10.3390/d13060243
APA StyleAlcocer, J., Oseguera, L. A., Ibarra-Morales, D., Escobar, E., & García-Cid, L. (2021). Responses of Benthic Macroinvertebrate Communities of Two Tropical, High-Mountain Lakes to Climate Change and Deacidification. Diversity, 13(6), 243. https://doi.org/10.3390/d13060243