Lessons of 15,000 Years of Human–Wildlife Interaction for Conservation in Patagonia in the 21st Century
Abstract
:1. Introduction
2. Human and Wildlife History in Patagonia from the Late Pleistocene Era to the Present
3. Lesson 1: Shifting Outcomes between Top-Down and Bottom-Up Control among Guanacos, Forage, and Predators
4. Lesson 2: Large-Scale Movements by Wildlife
5. Lesson 3: Long History of Possibly Strong Indirect Effects of Humans on Wildlife Communities
6. Lesson 4: Climate Change
7. Rewilding versus Coexistence or Inclusive Rewilding?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prates, L.; Politis, G.G.; Perez, S.I. Rapid radiation of humans in South America after the last glacial maximum: A radiocarbon-based study. PLoS ONE 2020, 15, e0236023. [Google Scholar] [CrossRef]
- Dietl, G.P.; Kidwell, S.M.; Brenner, M.; Burney, D.A.; Flessa, K.W.; Jackson, S.T.; Koch, P.L. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 2015, 43, 79–103. [Google Scholar] [CrossRef]
- Graham, R.W. The role of climatic change in the design of biological reserves: The paleoecological perspective. Cons. Biol. 1988, 2, 391–394. [Google Scholar] [CrossRef]
- Louys, J. (Ed.) Paleontology in Ecology and Conservation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–286. [Google Scholar]
- Wolverton, S.; Lyman, R.L. (Eds.) Conservation Biology and Applied Zooarchaeology; University of Arizona Press: Tucson, AZ, USA, 2012; pp. 1–241. [Google Scholar]
- Rowan, J.; Beaudrot, L.; Franklin, J.; Reed, K.E.; Smail, I.E.; Zamora, A.; Kamilar, J.M. Geographically divergent evolutionary and ecological legacies shape large mammal biodiversity in the global tropics and sub-tropics. Proc. Nat. Acad. Sci. USA 2020, 117, 1559–1565. [Google Scholar] [CrossRef]
- Vegas-Villarrúbia, T.; Rull, V.; Montoya, E.; Safont, E. Quaternary palaeoecology and nature conservation: A general review with examples from the neotropics. Quat. Sci. Rev. 2011, 30, 2361–2388. [Google Scholar] [CrossRef]
- Lyman, R.L. Biodiversity, paleozoology, and conservation biology. In Paleontology in Ecology and Conservation; Louys, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 147–169. [Google Scholar]
- Sandom, C.; Faurby, S.; Sandel, B.; Svenning, J.C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, P.L.; Barnosky, A.D. Late Quaternary Extinctions: State of the Debate. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 215–250. [Google Scholar] [CrossRef] [Green Version]
- Barnosky, A.D.; Lindsey, E.L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 2010, 217, 10–29. [Google Scholar] [CrossRef]
- Firestone, R.B.; West, A.; Kennett, J.P.; Becker, L.; Bunch, T.E.; Revay, Z.S.; Schultz, P.H.; Belgya, T.; Kennett, D.J.; Erlandson, J.M.; et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Nat. Acad. Sci. USA 2007, 104, 16016–16021. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, B.M.; Laub, R. Hyperdisease in the late Pleistocene: Validation of an early 20th century hypothesis. Naturwissenschaften 2006, 93, 557–564. [Google Scholar] [CrossRef]
- Martin, P.S. The discovery of America: The first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 1973, 179, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, L.; Rick, T.; Wolverton, S. The overkill model and its impact on environmental research. Ecol. Evol. 2018, 8, 9683–9696. [Google Scholar] [CrossRef]
- Surovell, T.A.; Pelton, S.R.; Anderson-Sprecher, R.; Myers, A.D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Nat. Acad. Sci. USA 2016, 113, 886–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolverton, S. The North American Pleistocene overkill hypothesis and the re-wilding debate. Div. Distr. 2010, 16, 874–876. [Google Scholar] [CrossRef]
- Prates, L.; Perez, S.I. Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Turney, C.; Barnett, R.; Martin, F.; Bray, S.C.; Vilstrup, J.T.; Orlando, L.; Salas-Gismondi, R.; Loponte, D.; Medina, M.; et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2016, 2, e1501682. [Google Scholar] [CrossRef] [Green Version]
- Perez, S.I.; Postillone, M.B.; Rindel, D.; Gobbo, D.; Gonzalez, P.N.; Bernal, V. Peopling time, spatial occupation and demography of Late Pleistocene–Holocene human population from Patagonia. Quat. Int. 2016. 425, 214–223. [CrossRef]
- Hernández, F.; Ríos, C.; Perotto-Baldivieso, H.L. Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco. Quat. Sci. Rev. 2019, 220, 279–290. [Google Scholar] [CrossRef]
- Rindel, D.D.; Moscardi, B.F.; Perez, S.I. Historias milenarias de presas y predadores: Guanacos y humanos en Patagonia. Museo 2020, 32, 47–54. [Google Scholar]
- Rindel, D.D.; Moscardi, B.F.; Perez, S.I. The distribution of the guanaco (Lama guanicoe) in Patagonia during Late Pleistocene–Holocene and its importance for prehistoric human diet. Holocene 2021, 31, 644–657. [Google Scholar] [CrossRef]
- Moscardi, B. Human diet evolution in Patagonia was driven by the expansion of Lama guanicoe after megafaunal extinctions. J. Arch. Sci. 2020, 10, 105098. [Google Scholar] [CrossRef]
- Gil, A.F.; Villalba, R.; Franchetti, F.R.; Otaola, C.; Abbona, C.C.; Peralta, E.A.; Neme, G. Between foragers and farmers: Climate change and human strategies in Northwestern Patagonia. Quaternary 2020, 3, 17. [Google Scholar] [CrossRef]
- Abbona, C.C.; Neme, G.; Johnson, J.; Gil, A.; Villalba, R.; Nagaoka, L.; Kim, T.; Wolverton, S. Sustainable harvest or resource depression? Using ancient DNA to study the population dynamics of guanaco in western Argentina during the Holocene. J. Archaeol. Sci. 2021, 129, 105355. [Google Scholar] [CrossRef]
- González, B.A.; Palma, R.E.; Zapata, B.; Marín, J.C. Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mammal Rev. 2006, 36, 157–178. [Google Scholar] [CrossRef]
- Prevosti, F.J.; Martin, F.M. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: Ecomorphology, stable isotopes, and taphonomy. Quat. Int. 2013, 305, 74–84. [Google Scholar] [CrossRef]
- Pires, M.M.; Rindel, D.; Moscardi, B.; Cruz, L.R.; Guimarães, P.R., Jr.; dos Reis, S.F.; Perez, S.I. Before, during and after megafaunal extinctions: Human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quat. Sci. Rev. 2020, 250, 106696. [Google Scholar] [CrossRef]
- Sarno, R.J.; Franklin, W.L.; O’Brien, S.J.; Johnson, W.E. rPatterns of mtDNA and microsatellite variation in an island and mainland population of guanacos in southern Chile. Anim. Conserv. Forum 2001, 4, 93–101. [Google Scholar] [CrossRef]
- Bolgeri, M.J. Caracterización de movimientos migratorios en guanacos (Lama guanicoe) y patrones de depredación por pumas (Puma concolor) en la Payunia, Mendoza. Ph.D. Thesis, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina, 2016. [Google Scholar]
- Ortega, I.M.; Franklin, W.L. Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev. Chil. Hist. Nat. 1995, 68, 489–500. [Google Scholar]
- Moraga, C.A.; Funes, M.C.; Pizarro, J.C.; Briceño, C.; Novaro, A.J. Effects of livestock on guanaco Lama guanicoe density, movements and habitat selection in a forest–grassland mosaic in Tierra del Fuego, Chile. Oryx 2015, 49, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Rey, A.; Novaro, A.J.; Guichon, M.L. Guanaco (Lama guanicoe) mortality by entanglement in wire fences. J. Nat. Conserv. 2011, 20, 280–283. [Google Scholar] [CrossRef]
- Musters, L. A year in Patagonia. J. R. Geogr. Soc. Lond. 1871, 41, 59–77. [Google Scholar] [CrossRef]
- Pero, A. The Tehuelche of Patagonia as chronicled by travelers and explorers of the nineteenth century. In Archaeological and Anthropological Perspectives on the Native Peoples of Pampa, Patagonia, and Tierra del Fuego to the Nineteenth Century; Briones, C., Lanata, J.L., Eds.; Greenwood Publishing Group: Westwood, CT, USA, 2002; pp. 103–119. [Google Scholar]
- Sala, A.; Corach, D. Analysis of admixture and genetic structure of two Native American groups of Southern Argentinean Patagonia. Mol. Biol. Rep. 2014, 41, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, H.F.; Elissalde, N.O.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Land Res. Manag. 1998, 12, 95–121. [Google Scholar] [CrossRef]
- Baldi, R.; Albon, S.; Elston, D. Guanacos and sheep: Evidence for continuing competition in arid Patagonia. Oecologia 2001, 129, 561–570. [Google Scholar] [CrossRef]
- Baldi, R.; Pelliza-Sbriller, A.; Elston, D.; Albon, S. High potential for competition between guanacos and sheep in Patagonia. J. Wildl. Manag. 2004, 68, 924–938. [Google Scholar] [CrossRef]
- Barbar, F.; Lambertucci, S.A. Introduced lagomorph produce stronger potential apparent competition in invaded communities than any other species in a similar but native food web. Biol. Invasions 2019, 21, 3735–3740. [Google Scholar] [CrossRef]
- Baldi, R.; Pirronitto, A.; Burgi, M.V.; Antún, M. Abundance Estimates of the Lesser Rhea Rhea pennata pennata in the Argentine Patagonia: Conservation Implications. Front. Ecol. Evol. 2015, 345, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Bonino, N.A. Introduced mammals in Patagonia, southern Argentina: Consequences, problems, and management considerations. In Proceedings of the First International Wildlife Management Congress; The Wildlife Society: Bethesda, MD, USA, 1995; pp. 406–409. [Google Scholar]
- Novaro, A.; Funes, M.; Walker, R.S. Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biol. Conserv. 2000, 92, 25–33. [Google Scholar] [CrossRef]
- Novaro, A.J.; Walker, R.S. Human-induced changes in the role of carnivores in Patagonia. In Large carnivores and the Conservation of Biodiversity; Ray, J.C., Redford, K.H., Stenneck, R., Berger, J., Eds.; Island Press: Washington, DC, USA, 2005; pp. 267–287. [Google Scholar]
- Baldi, R.; De Lamo, D.A.; Failla, M.; Ferrando, P.; Funes, M.C.; Nugent, P.; von Thüngen, J. Plan Nacional de Manejo del Guanaco (Lama guanicoe); Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina, 2006; pp. 1–50. [Google Scholar]
- Plaza, P.I.; Lambertucci, S.A. Ecology and conservation of a rare species: What do we know and what may we do to preserve Andean condors? Biol. Conserv. 2020, 251, 108782. [Google Scholar] [CrossRef]
- Golluscio, R.A.; Deregibus, V.A.; Paruelo, J.M. Sustainability and range management in the Patagonian steppes. Ecol. Austral. 1998, 8, 265–284. [Google Scholar]
- Oliva, G.; Paredes, P.; Ferrante, D.; Cepeda, C.; Rabinovich, J. Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia. J. Appl. Ecol. 2019, 56, 1575–1584. [Google Scholar] [CrossRef]
- Travaini, A.; Zapata, S.C.; Bustamante, J.; Pedrana, J.; Zanón, J.I.; Rodríguez, A. Guanaco abundance and monitoring in Southern Patagonia: Distance sampling reveals substantially greater numbers than previously reported. Zool. Stud. 2015, 54, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Mesas, A.; Baldi, R.; González, B.A.; Burgi, V.; Chávez, A.; Johnson, W.E.; Marín, J.C. Past and recent effects of livestock activity on the genetic diversity and population structure of native guanaco populations of arid Patagonia. Animals 2021, 11, 1218. [Google Scholar] [CrossRef]
- Walker, S.; Novaro, A. The world’s southernmost pumas in Patagonia and the Southern Andes. In Cougar: Ecology and Conservation; Hornocker, M., Negri, S., Eds.; University of Chicago Press: Chicago, IL, USA, 2010; pp. 91–99. [Google Scholar]
- Novaro, A.; Walker, S.; Palacios, R.; Di Martino, S.; Monteverde, M.; Cañadell, S.; Rivas, L.; Cossíos, D. Endangered Andean cat distribution beyond the Andes in Patagonia. Cat News 2010, 53, 8–10. [Google Scholar]
- Oliva, G.; Paredes, P.; Ferrante, D.; Cepeda, C.; Rabinovich, J. Are Patagonia grasslands being overgrazed? A response to Marino et al. (2020). J. Appl. Ecol. 2020, 57, 2399–2405. [Google Scholar] [CrossRef]
- Adler, P.B.; Milchunas, D.G.; Sala, O.E.; Burke, I.C.; Lauenroth, W.K. Plant traits and ecosystem grazing effects: Comparison of US sagebrush steppe and Patagonian steppe. Ecol. Appl. 2005, 15, 774–792. [Google Scholar] [CrossRef] [Green Version]
- Lauenroth, W.K. Guanacos, spiny shrubs and the evolutionary history of grazing in the Patagonian steppe. Ecol. Austral. 1998, 8, 211–215. [Google Scholar]
- Marino, A.; Rodríguez, V.; Pazos, G. Resource-defense polygyny and self-limitation of population density in free-ranging guanacos. Behav. Ecol. 2016, 27, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.; Rodríguez, V.; Schroeder, N.M. Wild guanacos as scapegoat for continued overgrazing by livestock across southern Patagonia. J. Appl. Ecol. 2020, 57, 2393–2398. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Posse, G.; Collantes, M.B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J. Appl. Ecol. 2005, 42, 50–59. [Google Scholar] [CrossRef]
- König, H.E.; Skewes, O.; Helmreich, M.; Böck, P. Macroscopic and histological investigation of guanaco footpads (Lama guanicoe, Müller 1776). J. Morphol. 2015, 276, 331–341. [Google Scholar] [CrossRef]
- Duncan, K.; Holdaway, R. Footprint pressures and locomotion of moas and ungulates and their effects on the New Zealand indigenous biota through trampling. N. Z. J. Ecol. 1989, 12, 97–101. [Google Scholar]
- Bonino, N.; Pelliza Sbriller, A. Composición botánica de la dieta del guanaco (Lama guanicoe) en dos ambientes contrastantes de Tiera del Fuego, Argentina. Ecol. Austral. 1991, 1, 97–102. [Google Scholar]
- Fraser, M.D.; Gordon, I.J. The diet of goats, red deer and South American camelids feeding on three contrasting Scottish upland vegetation communities. J. Appl. Ecol. 1997, 34, 668–686. [Google Scholar] [CrossRef]
- San Martin, F.; Bryant, F.C. Nutrition of domesticated South American llamas and alpacas. Small Rumin. Res. 1989, 2, 191–216. [Google Scholar] [CrossRef]
- Rey, A.; Novaro, A.J.; Sahores, M.; Guichon, M.L. Demographic effects of live shearing on a guanaco population. Small Rumin. Res. 2012, 107, 92–100. [Google Scholar] [CrossRef]
- Baldi, R.; Campagna, C.; Saba, S. Abundancia y distribución del guanaco (Lama guanicoe) en el NE del Chubut, Patagonia Argentina. Mastozool. Neotrop. 1997, 4, 5–15. [Google Scholar]
- Iranzo, E.C.; Traba, J.; Acebes, P.; González, B.A.; Mata, C.; Estades, C.F.; Malo, J.E. Niche segregation between wild and domestic herbivores in Chilean Patagonia. PLoS ONE 2013, 8, e59326. [Google Scholar]
- Franklin, W.L. Contrasting socioecologies of South America’s wild camelids: The vicuna and guanaco. In Advances in the Study of Mammalian Behavior; Special Publication No. 7; Eisenberg, J.F., Kleiman, D., Eds.; American Society of Mammalogists: Shippensburg, PA, USA, 1983; pp. 573–629. [Google Scholar]
- Villavicencio, N.A.; Lindsey, E.L.; Martin, F.M.; Borrero, L.A.; Moreno, P.I.; Marshall, C.R.; Barnosky, A.D. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 2016, 39, 125–140. [Google Scholar] [CrossRef]
- Holling, C. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Miotti, L.; Salemme, M.C. When Patagonia was colonized: People mobility at high latitudes during Pleistocene/Holocene transition. Quat. Int. 2003, 109, 95–111. [Google Scholar] [CrossRef]
- Hopcraft, J.G.C.; Olff, H.; Sinclair, A.R.E. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 2010, 25, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Messier, F. Ungulate population models with predation: A case study with the North American moose. Ecology 1994, 75, 478–488. [Google Scholar] [CrossRef]
- Ballard, W.B.; Lutz, D.; Keegan, T.W.; Carpenter, L.H.; de Vos, J.C., Jr. Deer-predator relationships: A review of recent North American studies with emphasis on mule and black-tailed deer. Wildl. Soc. Bull. 2001, 29, 99–115. [Google Scholar]
- Benson, J.F.; Loveless, K.M.; Rutledge, L.Y.; Patterson, B.R. Ungulate predation and ecological roles of wolves and coyotes in eastern North America. Ecol. Appl. 2017, 27, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Perrig, P.L.; Fountain, E.D.; Lambertucci, S.A.; Pauli, J.N. Demography of avian scavengers after Pleistocene megafaunal extinction. Sci. Rep. 2019, 9, 9680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, A.; Pascual, M.; Baldi, R. Ecological drivers of guanaco recruitment: Variable carrying capacity and density dependence. Oecologia 2014, 175, 1189–1200. [Google Scholar] [CrossRef]
- Cabrera, A.; Yepes, J. Mamíferos Sudamericanos: Vida, Costumbres y Descripción; Ediar, Compañía Argentina de Editores: Buenos Aires, Argentina, 1940. [Google Scholar]
- Torres, H. Guanaco: Distribución y Conservación del Guanaco; IUCN/CSE Grupo Especialista en Camélidos Sudamericanos: London, UK, 1985; Informes Especial No. 2. [Google Scholar]
- Gaitán, J.J.; Bran, D.E.D.; Azcona, C. Trend of NDVI in the period 2000–2014 as indicator of land degradation in Argentina: Advantages and limitations. AgriScientia 2015, 32, 83–93. [Google Scholar] [CrossRef]
- Pazos, G.E.; Rodriguez, M.V.; Blanco, P.D. Vegetación terrestre: Descripción, monitoreo y relación con el clima y los herbívoros. In Reserva de Vida Silvestre San Pablo de Valdés: 10 Años Conservando el Patrimonio Natural y Cultural de la Península Valdés, Patagonia Argentina; Udrizar-Sauthier, D.E., Pazos, G.E., Arias, A., Eds.; Fundación Vida Silvestre Argentina-CONICET: Buenos Aires, Argentina, 2017; pp. 73–97. [Google Scholar]
- Milner-Gulland, E.J.; Fryxell, J.M.; Sinclair, A.R. Animal Migration: A Synthesis; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Serret, A. El Huemul: Fantasma de la Patagonia; Zagier & Urruty Publication: Buenos Aires, Argentina, 2001. [Google Scholar]
- Fernández, P.M.; Cruz, I.; Belardi, J.B.; De Nigris, M.; Muñoz, A.S. Human predation and natural history of huemul (Cervidae; Hippocamelus bisulcus Molina) in Patagonia: A zooarchaeological analysis. J. Ethnobiol. 2015, 35, 472–498. [Google Scholar] [CrossRef]
- Tessone, A.; Fernández, P.; Fernández, N.; De Nigris, M. Variaciones δ13C y δ15N en huemul (Hippocamelus bisulcus) durante el Holoceno en Cerro Casa de Piedra, Santa Cruz, Argentina. Implicancias para el estudio de su distribución pasada. Intersecc. Antropol. 2020, 21, 5–16. [Google Scholar] [CrossRef]
- Wolverton, S.; Otaola, C.; Neme, G.; Giardina, M.; Gil, A. Patch choice, landscape ecology, and foraging efficiency: The zooarchaeology of late Holocene foragers in Western Argentina. J. Ethnobiol. 2015, 35, 499–518. [Google Scholar] [CrossRef]
- Beldomenico, P.M.; Uhart, M.; Bono, M.F.; Marull, C.; Baldi, R.; Peralta, J.L. Internal parasites of free-ranging guanacos from Patagonia. Vet. Parasitol. 2003, 118, 71–77. [Google Scholar] [CrossRef]
- Pulliam, H.R. Sources, sinks, and population regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Oñatibia, G.R.; Aguiar, M.R. Paddock size mediates the heterogeneity of grazing impacts on vegetation. Rangel. Ecol. Manag. 2018, 71, 470–480. [Google Scholar] [CrossRef]
- Holt, R.D.; Bonsall, M.B. Apparent competition. Ann. Rev. Ecol. Evol. Syst. 2017, 48, 447–471. [Google Scholar] [CrossRef]
- Gelin, M.L.; Branch, L.C.; Thornton, D.H.; Novaro, A.J.; Gould, M.J.; Caragiulo, A. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia. PLoS ONE 2017, 12, e0188877. [Google Scholar] [CrossRef] [Green Version]
- Perrig, P.L.; Donadio, E.; Middleton, A.D.; Pauli, J.N. Puma predation subsidizes an obligate scavenger in the high Andes. J. Appl. Ecol. 2017, 54, 846–853. [Google Scholar] [CrossRef]
- Bank, M.S.; Sarno, R.J.; Campbell, N.K.; Franklin, W.L. Predation of guanacos (Lama guanicoe) by southernmost mountain lions (Puma concolor) during a historically severe winter in Torres del Paine National Park, Chile. J. Zool. 2002, 258, 215–222. [Google Scholar] [CrossRef]
- Bolgeri, M.J.; Novaro, A.J. Variación espacial en la depredación por puma (Puma concolor) sobre guanacos (Lama guanicoe) en La Payunia, Mendoza, Argentina. Mastozool. Neotrop. 2015, 22, 255–264. [Google Scholar]
- Seidensticker, J.C.; Hornocker, M.G.; Wiles, W.V.; Messick, J.P. Mountain lion social organization in the Idaho Primitive Area. Wildl. Monogr. 1973, 35, 3–60. [Google Scholar]
- Perrig, P.L.; Lambertucci, S.A.; Cruz, J.; Alarcón, P.A.; Plaza, P.I.; Middleton, A.D.; Blanco, G.; Sánchez-Zapata, J.A.; Donázar, J.A.; Pauli, J.N. Identifying conservation priority areas for the Andean condor in southern South America. Biol. Conserv. 2020, 243, 108494. [Google Scholar] [CrossRef]
- Walker, S.; Funes, M.; Heidel, L.; Palacios, R.; Novaro, A. The Endangered Andean cat and fracking in Patagonia. Oryx 2013, 48, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Darimont, C.T.; Fox, C.H.; Bryan, H.M.; Reimchen, T.E. The unique ecology of human predators. Science 2015, 349, 858–860. [Google Scholar] [CrossRef]
- Barros, V.; Vera, C.; Agosta, E.; Araneo, D.; Camilloni, I.; Carril, A.F.; Doyle, M.E.; Frumento, O.; Nuñez, M.; Ortiz de Zárate, M.I.; et al. Tercera Comunicación Nacional Sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones; Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina, 2014. [Google Scholar]
- Pessasq, N.; Flaherty, S.; Solmon, S.; Pascual, M. Climate change in northern Patagonia: Critical decrease in water resources. Theor. Appl. Climatol. 2020, 140, 807–822. [Google Scholar] [CrossRef]
- Oliva, G.; Dos Santos, E.; Sofía, O.; Umaña, F.; Massara, V.; Martínez, G.G.; Caruso, C.; Cariac, G.; Echevarría, D.; Fantozzi, A. The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia. Sci. Data 2020, 7, 327. [Google Scholar] [CrossRef]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Baldi, R.; Novaro, A.; Funes, M.; Walker, S.; Ferrando, P.; Failla, M.; Carmanchahi, P. Guanaco management in Patagonian rangelands: A conservation opportunity on the brink of collapse. In Wild Rangelands: Conserving Wildlife while Maintaining Livestock in Semi-Arid Ecosystems; du Toit, J., Kock, R., Deutsch, J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2010; pp. 266–290. [Google Scholar]
- Carmanchahi, P.; Schroeder, N.; Bolgeri, M.; Walker, R.S.; Funes, M.; Berg, J.; Taraborelli, P.; Ovejero, R.; Gregorio, P.; Moreno, P.; et al. Live-shearing effects on population parameters and movements in sedentary and migratory populations of guanacos. Oryx 2014, 49, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Bonino, M.F.; Azócar, D.L.M.; Schulte, J.A.; Cruz, F.B. Climate change and lizards: Changing species’ geographic ranges in Patagonia. Region. Environ. Chang. 2015, 15, 1121–1132. [Google Scholar] [CrossRef]
- Lazo-Cancino, D.; Rivera, R.; Paulsen-Cortez, K.; González-Berríos, N.; Rodríguez-Gutiérrez, R.; Rodriguez-Serrano, E. The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). J. Arid Environ. 2020, 173, 104016. [Google Scholar] [CrossRef]
- Chehébar, C.; Novaro, A.; Iglesias, G.; Walker, S.; Funes, M.; Tammone, M.; Didier, K. Identificación de Áreas de Importancia Para la Biodiversidad en la Estepa y Monte de Patagonia; Administración de Parques Nacionales, Wildlife Conservation Society, and the Nature Conservancy: San Carlos de Bariloche, Argentina, 2013; pp. 1–112. [Google Scholar]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for Conserving Connectivity through Ecological Networks and Corridors; Best Practice Protected Area Guidelines Series No. 30; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Walker, S.; Novaro, A.J.; Funes, M.; Baldi, R.; Chehébar, C.; Ramilo, E.J.; Ayesa, J.A.; Bran, D.M.; Vila, A.; Bonino, N.A. Rewilding Patagonia: In the wild Patagonia reserve network, guanacos, choiques, and pumas will roam free. Wild Earth 2005, 15, 32–37. [Google Scholar]
- Secretaria de Ambiente y Desarrollo Sustentable. Informe Nacional Ambiente y Áreas Protegidas de la Argentina 2008–2018; Presidencia de la Nación y Administración de Parques Nacionales: Buenos Aires, Argentina, 2019; pp. 1–60. [Google Scholar]
- Jørgensen, D. Rethinking rewilding. Geoforum 2015, 65, 482–488. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novaro, A.J.; Walker, R.S. Lessons of 15,000 Years of Human–Wildlife Interaction for Conservation in Patagonia in the 21st Century. Diversity 2021, 13, 633. https://doi.org/10.3390/d13120633
Novaro AJ, Walker RS. Lessons of 15,000 Years of Human–Wildlife Interaction for Conservation in Patagonia in the 21st Century. Diversity. 2021; 13(12):633. https://doi.org/10.3390/d13120633
Chicago/Turabian StyleNovaro, Andrés J., and Rebecca Susan Walker. 2021. "Lessons of 15,000 Years of Human–Wildlife Interaction for Conservation in Patagonia in the 21st Century" Diversity 13, no. 12: 633. https://doi.org/10.3390/d13120633
APA StyleNovaro, A. J., & Walker, R. S. (2021). Lessons of 15,000 Years of Human–Wildlife Interaction for Conservation in Patagonia in the 21st Century. Diversity, 13(12), 633. https://doi.org/10.3390/d13120633