Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions
Abstract
:1. Introduction
2. Physical Factors
2.1. Temperature
2.2. Light
2.3. Aragonite Saturation
2.4. Sediments
2.5. Nutrients
2.6. Hydrodynamics
3. Biological Factors
3.1. Larval Dispersal
3.2. Settlement Cues
3.3. Photosymbiosis
3.4. Competition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellwood, D.R.; Hughes, T.P.; Connolly, S.R.; Tanner, J. Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett. 2005, 8, 643–651. [Google Scholar] [CrossRef]
- Stehli, F.G.; Wells, J.W. Diversity and Age Patterns in Hermatypic Corals. Syst. Biol. 1971, 20, 115–126. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals in Space & Time. The Biogeography & Evolution of the Scleractinia; Cornell University Press: Ithaca, NY, USA, 1995; p. 321. [Google Scholar]
- Veron, J.E.N.; Minchin, P.R. Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont. Shelf Res. 1992, 12, 835–857. [Google Scholar] [CrossRef]
- Dana, J. On the temperature limiting the distribution of coral reefs. Am. J. Sci. 1843, 45, 130–131. [Google Scholar]
- Muir, P.R.; Wallace, C.C.; Done, T.; Aguirre, J.D. Limited scope for latitudinal extension of reef corals. Science 2015, 348, 1135–1138. [Google Scholar] [CrossRef]
- Madin, J.; Allen, A.; Baird, A.; Pandolfi, J.; Sommer, B. Scope for latitudinal extension of reef corals is species specific. Front. Biogeogr. 2016, 8, e29328. [Google Scholar] [CrossRef] [Green Version]
- Mizerek, T.L.; Baird, A.H.; Beaumont, L.J.; Madin, J.S. Environmental tolerance governs the presence of reef corals at latitudes beyond reef growth. Glob. Ecol. Biogeogr. 2016, 25, 979–987. [Google Scholar] [CrossRef]
- Kleypas, J.; McManus, J.; MeÑEz, L. Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am. Zool. 1999, 39, 146–159. [Google Scholar] [CrossRef]
- Johanness, R.E.; Wiebe, W.J.; Crossland, C.J.; Rimmer, D.W.; Smith, S.V. Latitudinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 1983, 11, 105–111. [Google Scholar] [CrossRef]
- Rasher, D.; Hay, M.; Rasher, D.B.; Hay, M.E. Chemically rich seaweeds poison corals when not controlled by herbivores. Proc. Natl. Acad. Sci. USA 2010, 107, 9683–9688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasher, D.B.; Engel, S.; Bonito, V.; Fraser, G.J.; Montoya, J.P.; Hay, M.E. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. Oecologia 2012, 169, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Harrington, L.; Fabricius, K.; De’Ath, G.; Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 2004, 85, 3428–3437. [Google Scholar] [CrossRef]
- Morse, A.N.C.; Morse, D.E. Flypapers for Coral and Other Planktonic Larvae: New materials incorporate morphogens for applications in research, restoration, aquaculture, and medicine. BioScience 1996, 46, 254–262. [Google Scholar] [CrossRef] [Green Version]
- LaJeunesse, T.; Parkinson, J.; Gabrielson, P.; Jeong, H.J.; Reimer, J.; Voolstra, C.; Santos, S. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 2018, 28, 2570–2580. [Google Scholar] [CrossRef] [Green Version]
- Goulet, T.L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 2006, 321, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, D.J.; Howells, E.J.; Wham, D.C.; Steury, T.D.; Santos, S.R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol. Ecol. 2017, 26, 2640–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornhill, D.J.; Lewis, A.M.; Wham, D.C.; LaJeunesse, T.C. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 2014, 68, 352–367. [Google Scholar] [CrossRef]
- Baird, A.H.; Cumbo, V.R.; Leggat, W.; Rodriguez-Lanetty, M. Fidelity and flexibility in coral symbioses. Mar. Ecol. Prog. Ser. 2007, 347, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Wicks, L.C.; Sampayo, E.; Gardner, J.P.A.; Davy, S.K. Local endemicity and high diversity characterise high-latitude coral–Symbiodinium partnerships. Coral Reefs 2010, 29, 989–1003. [Google Scholar] [CrossRef]
- Keith, S.A.; Herbert, R.J.H.; Norton, P.A.; Hawkins, S.J.; Newton, A.C. Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers. Divers. Distrib. 2011, 17, 275–286. [Google Scholar] [CrossRef]
- Sommer, B.; Harrison, P.; Beger, M.; Pandolfi, J. Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 2014, 95, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Vamosi, S.M.; Mazer, S.J.; Cornejo, F. Breeding systems and seed size in a neotropical flora: Testing evolutionary hypotheses. Ecology 2008, 89, 2461–2472. [Google Scholar] [CrossRef]
- Baird, A.H.; Guest, J.R.; Willis, B.L. Systematic and Biogeographical Patterns in the Reproductive Biology of Scleractinian Corals. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 551–571. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.; Baird, A.; Harii, S.; Connolly, S. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Chang. 2014, 4, 498–502. [Google Scholar] [CrossRef]
- Mizerek, T.L.; Madin, J.S.; Benzoni, F.; Huang, D.; Luiz, O.J.; Mera, H.; Schmidt-Roach, S.; Smith, S.D.A.; Sommer, B.; Baird, A.H. No evidence for tropicalization of coral assemblages in a subtropical climate change hot spot. Coral Reefs 2021, 40, 1451–1461. [Google Scholar] [CrossRef]
- Greenstein, B.; Pandolfi, J. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Chang. Biol. 2008, 14, 513–528. [Google Scholar] [CrossRef]
- Kiessling, W.; Simpson, C.; Beck, B.; Mewis, H.; Pandolfi, J.M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. USA 2012, 109, 21378–21383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beger, M.; Sommer, B.; Harrison, P.L.; Smith, S.D.A.; Pandolfi, J.M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 2014, 20, 245–257. [Google Scholar] [CrossRef]
- Camp, E.F.; Schoepf, V.; Mumby, P.J.; Hardtke, L.A.; Rodolfo-Metalpa, R.; Smith, D.J.; Suggett, D.J. The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments. Front. Mar. Sci. 2018, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Abrego, D.; Baird, A.; Howells, E.; Smith, S. Pools of resilience. Bull. Mar. Sci. 2021. accepted. [Google Scholar] [CrossRef]
- Precht, W.; Aronson, R. Climate Flickers and Range Shifts of Reef Corals. Front. Ecol. Environ. 2004, 2, 307–314. [Google Scholar] [CrossRef]
- Yamano, H.; Sugihara, K.; Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 2011, 38, L04601. [Google Scholar] [CrossRef]
- Dalton, S.J.; Roff, G. Spatial and Temporal Patterns of Eastern Australia Subtropical Coral Communities. PLoS ONE 2013, 8, e75873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, B.; Sampayo, E.; Beger, M.; Harrison, P.; Babcock, R.; Pandolfi, J. Local and regional controls of phylogenetic structure at the high-latitude range limits of corals. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Currie, D.J. The Species Richness-Energy Hypothesis in a System Where Historical Factors Are Thought to Prevail: Coral Reefs. Am. Nat. 1996, 148, 138–159. [Google Scholar] [CrossRef]
- Harriott, V.; Banks, S. Latitudinal variation in coral communities in eastern Australia: A qualitative biophysical model of factors regulating coral reefs. Coral Reefs 2002, 21, 83–94. [Google Scholar] [CrossRef]
- Kumagai, N.H.; García Molinos, J.; Yamano, H.; Takao, S.; Fujii, M.; Yamanaka, Y. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl. Acad. Sci. USA 2018, 115, 8990–8995. [Google Scholar] [CrossRef] [Green Version]
- Sommer, B.; Beger, M.; Harrison, P.L.; Babcock, R.C.; Pandolfi, J.M. Differential response to abiotic stress controls species distributions at biogeographic transition zones. Ecography 2018, 41, 478–490. [Google Scholar] [CrossRef]
- Tuckett, C.A.; Wernberg, T. High Latitude Corals Tolerate Severe Cold Spell. Front. Mar. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Veron, J.E.N. Southern geographic limits to the distribution of Great Barrier Reef hermatypic corals. In Proceedings of the 2nd International Coral Reef Symposium, Brisbane, Australia, 22 June–2nd July 1973; Great Barrier Reef Committee: Brisbane, Australia, 1974; pp. 465–474. [Google Scholar]
- Coles, S.L.; Fadlallah, Y.H. Reef coral survival and mortality at low temperatures in the Arabian Gulf: New species-specific lower temperature limits. Coral Reefs 1991, 9, 231–237. [Google Scholar] [CrossRef]
- Kemp, D.W.; Oakley, C.A.; Thornhill, D.J.; Newcomb, L.A.; Schmidt, G.W.; Fitt, W.K. Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob. Chang. Biol. 2011, 17, 3468–3477. [Google Scholar] [CrossRef]
- Tracey, S.; William, C.D.; Ove, H.-G. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 2003, 248, 85–97. [Google Scholar]
- Leriorato, J.C.; Nakamura, Y. Unpredictable extreme cold events: A threat to range-shifting tropical reef fishes in temperate waters. Mar. Biol. 2019, 166, 110. [Google Scholar] [CrossRef]
- McIlroy, S.E.; Thompson, P.D.; Yuan, F.L.; Bonebrake, T.C.; Baker, D.M. Subtropical thermal variation supports persistence of corals but limits productivity of coral reefs. Proc. R. Soc. B 2019, 286, 20190882. [Google Scholar] [CrossRef]
- Malcolm, H.A.; Davies, P.L.; Jordan, A.; Smith, S.D.A. Variation in sea temperature and the East Australian Current in the Solitary Islands region between 2001–2008. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 616–627. [Google Scholar] [CrossRef]
- Jurriaans, S.; Hoogenboom, M.O. Seasonal acclimation of thermal performance in two species of reef-building corals. Mar. Ecol. Prog. Ser. 2020, 635, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Jurriaans, S.; Hoogenboom, M.O.; Ferrier-Pages, C. Similar thermal breadth of two temperate coral species from the Mediterranean Sea and two tropical coral species from the Great Barrier Reef. Coral Reefs 2021, 40, 1281–1295. [Google Scholar] [CrossRef]
- Muscatine, L. Nutrition of corals. In Biology and Geology of Coral Reefs; Jones, O.A., Endean, R., Eds.; Academic Press: New York, NY, USA, 1973; Volume 2, pp. 77–115. [Google Scholar]
- Done, T. Coral zonation: Its nature and significance. In Perspectives on Coral Reefs; Barnes, D.J., Ed.; Australian Institute of Marine Science: Townsville, QLD, Australia, 1983; pp. 107–147. [Google Scholar]
- Roberts, T.E.; Keith, S.A.; Rahbek, C.; Bridge, T.C.L.; Caley, M.J.; Baird, A.H. Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biol. Lett. 2019, 15, 20190493. [Google Scholar] [CrossRef] [Green Version]
- Kahng, S.; Hochberg, E.; Apprill, A.; Wagner, D.; Luck, D.G.; Perez, D.; Bidigare, R. Efficient light harvesting in deep-water zooxanthellate corals. Mar. Ecol. Prog. Ser. 2012, 455, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.J.; Sandin, S.A.; Zgliczynski, B.J.; Fox, M.D.; Gove, J.M.; Rogers, J.S.; Furby, K.A.; Hartmann, A.C.; Caldwell, Z.R.; Price, N.N.; et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 2018, 165, 60. [Google Scholar] [CrossRef] [Green Version]
- Anthony, K.R.N.; Hoogemboom, M.O.; Connolly, S.R. Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct. Ecol. 2005, 19, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, P.J. The role of colony morphology and substratum inclination in the success of Millepora alcicornis on shallow coral reefs. Coral Reefs 1999, 18, 133–140. [Google Scholar] [CrossRef]
- Baird, A.; Abrego, D. Troglodyte Turbinaria in the intertidal rock pools of the Solitary Islands Marine Park. Galaxea J. Coral Reef Stud. 2021, 23, 9–10. [Google Scholar] [CrossRef]
- Fantazzini, P.; Mengoli, S.; Pasquini, L.; Bortolotti, V.; Brizi, L.; Mariani, M.; Di Giosia, M.; Fermani, S.; Capaccioni, B.; Caroselli, E.; et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 2015, 6, 7785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, T.; Flater, J.L.; McCulloch, M.T.; Clode, P.L. Ocean acidification causes structural deformities in juvenile coral skeletons. Sci. Adv. 2016, 2, e1501130. [Google Scholar] [CrossRef] [Green Version]
- Tambutté, E.; Venn, A.A.; Holcomb, M.; Segonds, N.; Techer, N.; Zoccola, D.; Allemand, D.; Tambutté, S. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 2015, 6, 7368. [Google Scholar] [CrossRef] [Green Version]
- Manzello, D. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 2010, 29, 749–758. [Google Scholar] [CrossRef]
- Eyre, B.D.; Cyronak, T.; Drupp, P.; De Carlo, E.H.; Sachs, J.P.; Andersson, A.J. Coral reefs will transition to net dissolving before end of century. Science 2018, 359, 908–911. [Google Scholar] [CrossRef] [Green Version]
- Doropoulos, C.; Ward, S.; Diaz-Pulido, G.; Hoegh-Guldberg, O.; Mumby, P.J. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett. 2012, 15, 338–346. [Google Scholar] [CrossRef]
- Diaz-Pulido, G.; Gouezo, M.; Tilbrook, B.; Dove, S.; Anthony, K.R.N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 2011, 14, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Nivia, C.; Diaz-Pulido, G.; Kline, D.; Guldberg, O.-H.; Dove, S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob. Chang. Biol. 2013, 19, 1919–1929. [Google Scholar] [CrossRef]
- Tribollet, A.; Godinot, C.; Atkinson, M.; Langdon, C. Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob. Biogeochem. Cycles 2009, 23, GB3008. [Google Scholar] [CrossRef]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.P.; Langdon, C.; Opdyke, B.N. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 1999, 284, 118–120. [Google Scholar] [CrossRef]
- Barros, V.R.; Fields, C.B. Climate Change 2014: Impacts, adaptations, and vulnerability. Part B: Regional aspects. In Contribution of Working Group II to the 5th Assessment Report of the IPCC; Cambridge University Press: New York, NY, USA, 2014; pp. 1133–1197. [Google Scholar]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral reefs in the Anthropocene. Nature 2017, 546, 82. [Google Scholar] [CrossRef]
- Comeau, S.; Edmunds, P.J.; Spindel, N.B.; Carpenter, R.C. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnol. Oceanogr. 2014, 59, 1081–1091. [Google Scholar] [CrossRef]
- Maier, C.; Watremez, P.; Taviani, M.; Weinbauer, M.G.; Gattuso, J.P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B 2012, 279, 1716–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, M.; Falter, J.; Trotter, J.; Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2012, 2, 623–627. [Google Scholar] [CrossRef]
- Thresher, R.E.; Tilbrook, B.; Fallon, S.; Wilson, N.C.; Adkins, J. Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar. Ecol. Prog. Ser. 2011, 442, 87–99. [Google Scholar] [CrossRef]
- Boyd, P.W.; Collins, S.; Dupont, S.; Fabricius, K.; Gattuso, J.-P.; Havenhand, J.; Hutchins, D.A.; Riebesell, U.; Rintoul, M.S.; Vichi, M.; et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Glob. Chang. Biol. 2018, 24, 2239–2261. [Google Scholar] [CrossRef]
- Heinze, C.; Blenckner, T.; Martins, H.; Rusiecka, D.; Döscher, R.; Gehlen, M.; Gruber, N.; Holland, E.; Hov, Ø.; Joos, F.; et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. USA 2021, 118, e2008478118. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 1990, 62, 185–202. [Google Scholar] [CrossRef]
- Wilson, B. Chapter 1-Introduction. In The Biogeography of the Australian North West Shelf; Wilson, B., Ed.; Elsevier: Boston, MA, USA, 2013; pp. 1–12. [Google Scholar]
- Sanders, D.; Baron-Szabo, R. Scleractinian assemblages under sediment input: Their characteristics and relation to the nutrient input concept. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 216, 139–181. [Google Scholar] [CrossRef]
- Junjie, R.; Browne, N.; Erftemeijer, P.; Todd, P. Impacts of Sediments on Coral Energetics: Partitioning the Effects of Turbidity and Settling Particles. PLoS ONE 2014, 9, e107195. [Google Scholar] [CrossRef]
- Ricardo, G.F.; Jones, R.J.; Clode, P.L.; Humanes, A.; Giofre, N.; Negri, A.P. Sediment characteristics influence the fertilisation success of the corals Acropora tenuis and Acropora millepora. Mar. Pollut. Bull. 2018, 135, 941–953. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Norris, B.K.; Rosenberger, K.J. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs 2015, 34, 967–975. [Google Scholar] [CrossRef]
- Morgan, K.M.; Perry, C.T.; Smithers, S.G.; Johnson, J.A.; Daniell, J.J. Evidence of extensive reef development and high coral cover in nearshore environments: Implications for understanding coral adaptation in turbid settings. Sci. Rep. 2016, 6, 29616. [Google Scholar] [CrossRef]
- Richards, Z.T.; Garcia, R.A.; Wallace, C.C.; Rosser, N.L.; Muir, P.R. A Diverse Assemblage of Reef Corals Thriving in a Dynamic Intertidal Reef Setting (Bonaparte Archipelago, Kimberley, Australia). PLoS ONE 2015, 10, e0117791. [Google Scholar] [CrossRef] [Green Version]
- Mies, M.; Francini-Filho, R.B.; Zilberberg, C.; Garrido, A.G.; Longo, G.O.; Laurentino, E.; Güth, A.Z.; Sumida, P.Y.G.; Banha, T.N.S. South Atlantic Coral Reefs Are Major Global Warming Refugia and Less Susceptible to Bleaching. Front. Mar. Sci. 2020, 7, 514. [Google Scholar] [CrossRef]
- Zweifler, A.; O’Leary, M.; Morgan, K.; Browne, N.K. Turbid Coral Reefs: Past, Present and Future—A Review. Diversity 2021, 13, 251. [Google Scholar] [CrossRef]
- Anthony, K.R.N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Biol. Ecol. 1999, 232, 85–106. [Google Scholar] [CrossRef]
- Anthony, K.R.N.; Fabricius, K.E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol. 2000, 252, 221–253. [Google Scholar] [CrossRef]
- Ezzat, L.; Maguer, J.-F.; Grover, R.; Rottier, C.; Tremblay, P.; Ferrier-Pagès, C. Nutrient starvation impairs the trophic plasticity of reef-building corals under ocean warming. Funct. Ecol. 2019, 33, 643–653. [Google Scholar] [CrossRef]
- Tremblay, P.; Gori, A.; Maguer, J.F.; Hoogenboom, M.; Ferrier-Pagès, C. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci. Rep. 2016, 6, 38112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmiento, J.L.; Gruber, N.; Brzezinski, M.A.; Dunne, J.P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 2004, 427, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Crossland, C.J.; Hatcher, B.G.; Atkinson, M.J.; Smith, S.V. Dissolved nutrients of a high-latitude coral reef, Houtman Abrolhos Islands, Western Australia. Mar. Ecol. Prog. Ser. 1984, 14, 159–163. [Google Scholar] [CrossRef]
- Marubini, F.; Davies, P.S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 1996, 127, 319–328. [Google Scholar] [CrossRef]
- Langdon, C.; Atkinson, M. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 2005, 110, C09S07. [Google Scholar] [CrossRef]
- Ferrier-Pagès, C.; Gattuso, J.P.; Dallot, S.; Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 2000, 19, 103–113. [Google Scholar] [CrossRef]
- Kinsey, D.W.; Davies, P.J. Effects of elevated nitrogen and phosphorus on coral reef growth1. Limnol. Oceanogr. 1979, 24, 935–940. [Google Scholar] [CrossRef]
- Ezzat, L.; Maguer, J.-F.; Grover, R.; Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 2016, 6, 31768. [Google Scholar] [CrossRef] [Green Version]
- Monismith, S.G. Hydrodynamics of Coral Reefs. Annu. Rev. Fluid Mech. 2007, 39, 37–55. [Google Scholar] [CrossRef]
- Willis, B.L.; Oliver, J.K. Direct tracking of coral larvae: Implications for dispersal studies of planktonic larvae in topographically complex environments. Ophelia 1990, 32, 145–162. [Google Scholar] [CrossRef]
- Harii, S.; Kayanne, H.; Takigawa, H.; Hayashibara, T.; Yamamoto, M. Larval survivorship competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 2002, 141, 39–46. [Google Scholar]
- Hata, T.; Madin, J.S.; Cumbo, V.R.; Denny, M.; Figueiredo, J.; Harii, S.; Thomas, C.J.; Baird, A.H. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 2017, 7, 2249. [Google Scholar] [CrossRef] [Green Version]
- Stocking, J.B.; Laforsch, C.; Sigl, R.; Reidenbach, M.A. The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. J. R. Soc. Interface 2018, 15, 20180448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, M.P.; Weis, V.M.; Patterson, M.R.; Jokiel, P.L. Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J. Exp. Mar. Biol. Ecol. 1994, 178, 153–179. [Google Scholar] [CrossRef]
- Schutter, M.; Crocker, J.; Paijmans, A.; Janse, M.; Osinga, R.; Verreth, A.J.; Wijffels, R.H. The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 2010, 29, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Madin, J.S.; Connolly, S.R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 2006, 444, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Chesson, P. General Theory of Competitive Coexistence in Spatially-Varying Environments. Theor. Popul. Biol. 2000, 58, 211–237. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Highsmith, R.C. Reproduction by Fragmentation in Corals. Mar. Ecol. Prog. Ser. 1982, 7, 207–226. [Google Scholar] [CrossRef]
- Smith, L.D.; Hughes, T.P. An experimental assessment of survival, re-attachment and fecundity of coral fragments. J. Exp. Mar. Biol. Ecol. 1999, 235, 147–164. [Google Scholar] [CrossRef]
- Tunnicliffe, V. Breakage and propagation of the stony coral Acropora cervicornis. Proc. Natl. Acad. Sci. USA 1981, 78, 2427–2431. [Google Scholar] [CrossRef] [Green Version]
- Rasser, M.; Riegl, B. Holocene coral reef rubble and its binding agents. Coral Reefs 2002, 21, 57–72. [Google Scholar] [CrossRef]
- Madin, J.; Dell, A.; Madin, E.; Nash, M. Spatial variation in mechanical properties of coral reef substrate and implications for coral colony integrity. Coral Reefs 2012, 32, 173–179. [Google Scholar] [CrossRef]
- Done, T.J. Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1982, 1, 95–107. [Google Scholar] [CrossRef]
- Eagle, J.; Baird, A.; Jones, G.; Kingsford, M. Recruitment hotspots: Consistent spatial patterns in the relative abundance of coral recruits at One Tree Island Australia. Galaxea 2012, 14, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Maida, M.; Coll, J.C.; Sammarco, P.W. Shedding new light on scleractinian coral recruitment. J. Exp. Mar. Biol. Ecol. 1994, 180, 189–202. [Google Scholar] [CrossRef]
- Viehman, S.; Hench, J.L.; Griffin, S.P.; Malhotra, A.; Egan, K.; Halpin, P.N. Understanding differential patterns in coral reef recovery: Chronic hydrodynamic disturbance as a limiting mechanism for coral colonization. Mar. Ecol. Prog. Ser. 2018, 605, 135–150. [Google Scholar] [CrossRef]
- Massel, S.R.; Done, T.J. Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: Meteorology, hydrodynamics and demography. Coral Reefs 1993, 12, 153–166. [Google Scholar] [CrossRef]
- Sebens, K.P.; Grace, S.P.; Helmuth, B.; Maney, E.J., Jr.; Miles, J.S. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar. Biol. 1998, 131, 347–360. [Google Scholar] [CrossRef]
- Harriott, V.J.; Smith, S.D.A.; Harrison, P.L. Patterns of coral community structure of subtropical reefs in the Solitary Islands Marine Reserve, Eastern Australia. Mar. Ecol. Prog. Ser. 1994, 109, 67–76. [Google Scholar] [CrossRef]
- Ross, C.L.; Falter, J.L.; Schoepf, V.; McCulloch, M.T. Perennial growth of hermatypic corals at Rottnest Island, Western Australia (32° S). PeerJ 2015, 3, e781. [Google Scholar] [CrossRef] [PubMed]
- Yamano, H.; Sugihara, K.; Watanabe, T.; Shimamura, M.; Hyeong, K. Coral reefs at 34° N, Japan: Exploring the end of environmental gradients. Geology 2012, 40, 835–838. [Google Scholar] [CrossRef]
- Fairley, I.; Lewis, M.; Robertson, B.; Hemer, M.; Masters, I.; Horrillo-Caraballo, J.; Karunarathna, H.; Reeve, D.E. A classification system for global wave energy resources based on multivariate clustering. Appl. Energy 2020, 262, 114515. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.J.; Ayre, D.J. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 2004, 92, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Noreen, A.M.E.; Harrison, P.L.; Van Oppen, M.J.H. Genetic diversity and connectivity in a brooding reef coral at the limit of its distribution. Proc. R. Soc. B 2009, 276, 3927–3935. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.J.; Ayre, D.J. Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Conserv. Biol. J. Soc. Conserv. Biol. 2008, 22, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Roach, S.; Miller, K.J.; Andreakis, N. Pocillopora aliciae: A new species of scleractinian coral (Scleractinia, Pocilloporidae) from subtropical Eastern Australia. Zootaxa 2013, 3626, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noreen, A.M.E.; Schmidt-Roach, S.; Harrison, P.L.; van Oppen, M.J.H. Diverse associations among coral host haplotypes and algal endosymbionts may drive adaptation at geographically peripheral and ecologically marginal locations. J. Biogeogr. 2015, 42, 1639–1650. [Google Scholar] [CrossRef]
- Graham, E.; Baird, A.; Connolly, S. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 2008, 27, 529–539. [Google Scholar] [CrossRef]
- Noreen, A.; Van Oppen, M.J.; Harrison, P.L. Genetic diversity and differentiation among high-latitude broadcast-spawning coral populations disjunct from the core range. Mar. Ecol. Prog. Ser. 2013, 491, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Heyward, A.J.; Negri, A.P. Natural inducers for coral larval metamorphosis. Coral Reefs 1999, 18, 273–279. [Google Scholar] [CrossRef]
- Morse, D.; Morse, A. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 1991, 181, 104–122. [Google Scholar] [CrossRef]
- Jorissen, H.; Galand, P.E.; Bonnard, I.; Meiling, S.; Raviglione, D.; Meistertzheim, A.-L.; Hédouin, L.; Banaigs, B.; Payri, C.E.; Nugues, M.M. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci. Rep. 2021, 11, 14610. [Google Scholar] [CrossRef]
- Negri, A.P.; Webster, N.S.; Hill, R.T.; Heyward, A.J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol.Prog. Ser. 2001, 223, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Siboni, N.; Abrego, D.; Puill-Stephan, E.; King, W.L.; Bourne, D.G.; Raina, J.-B.; Seymour, J.R.; Harder, T. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 2020, 39, 1703–1713. [Google Scholar] [CrossRef]
- Tebben, J.; Tapiolas, D.M.; Motti, C.A.; Abrego, D.; Negri, A.P.; Blackall, L.L.; Steinberg, P.D.; Harder, T. Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium. PLoS ONE 2011, 6, e19082. [Google Scholar] [CrossRef] [Green Version]
- Tran, C.; Hadfield, M. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 2011, 433, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Webster, N.S.; Smith, L.; Heyward, A.; Watts, E.; Webb, R.; Blackall, L.; Negri, A.P. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 2004, 70, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritson-Williams, R.; Arnold, S.N.; Paul, V.J. Patterns of larval settlement preferences and post-settlement survival for seven Caribbean corals. Mar. Ecol. Prog. Ser. 2016, 548, 127–138. [Google Scholar] [CrossRef]
- Nozawa, Y.; Tokeshi, M.; Nojima, S. Reproduction and recruitment of scleractinian corals in a high-latitude coral community, Amakusa, southwestern Japan. Mar. Biol. 2006, 149, 1047–1058. [Google Scholar] [CrossRef]
- Harriott, V.; Harrison, P.; Banks, S. The coral communities of Lord Howe Island. Mar. Freshw. Res. 1995, 46, 457–465. [Google Scholar] [CrossRef]
- Gabrielson, P.W.; Hughey, J.R.; Diaz-Pulido, G. Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta). J. Phycol. 2018, 54, 429–434. [Google Scholar] [CrossRef]
- Twist, B.A.; Neill, K.F.; Bilewitch, J.; Jeong, S.Y.; Sutherland, J.E.; Nelson, W.A. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. PLoS ONE 2019, 14, e0225645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaJeunesse, T.C.; Loh, W.K.W.; van Woesik, R.; Hoegh-Guldberg, O.; Schmidt, G.W.; Fitt, W.K. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limonology Oceanogr. 2003, 48, 2046–2054. [Google Scholar] [CrossRef] [Green Version]
- LaJeunesse, T.C.; Bhagooli, R.; Hidaka, M.; de Vantier, L.; Done, T.; Schmidt, G.W.; Fitt, W.K.; Hoegh-Guldberg, O. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 2004, 284, 147–161. [Google Scholar] [CrossRef]
- Chen, B.; Yu, K.; Liang, J.; Huang, W.; Wang, G.; Su, H.; Qin, Z.; Huang, X.; Pan, Z.; Luo, W.; et al. Latitudinal Variation in the Molecular Diversity and Community Composition of Symbiodiniaceae in Coral From the South China Sea. Front. Microbiol. 2019, 10, 1278. [Google Scholar] [CrossRef]
- Sampayo, E.M.; Franceschinis, L.; Hoegh-Guldberg, O.; Dove, S. Niche partitioning of closely related symbiotic dinoflagellates. Mol. Ecol. 2007, 16, 3721–3733. [Google Scholar] [CrossRef] [PubMed]
- Pontasch, S.; Scott, A.; Hill, R.; Bridge, T.; Fisher, P.; Davy, S. Symbiodinium diversity in the sea anemone Entacmaea quadricolor on the east Australian coast. Coral Reefs 2014, 33, 537–542. [Google Scholar] [CrossRef]
- Rodriguez-Lanetty, M.; Loh, W.; Carter, D.; Hoegh-Guldberg, O. Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar. Biol. 2001, 138, 1175–1181. [Google Scholar]
- Silverstein, R.; Correa, A.; LaJeunesse, T.; Baker, A. Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar. Ecol. Prog. Ser. 2011, 422, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Kendrick, G.A.; Kennington, W.J.; Richards, Z.T.; Stat, M. Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol. Ecol. 2014, 23, 3113–3126. [Google Scholar] [CrossRef]
- Macdonald, A.H.H.; Sampayo, E.M.; Ridgway, T.; Schleyer, M.H. Latitudinal symbiont zonation in Stylophora pistillata from southeast Africa. Mar. Biol. 2008, 154, 209–217. [Google Scholar] [CrossRef]
- Cowman, P.F.; Quattrini, A.M.; Bridge, T.C.L.; Watkins-Colwell, G.J.; Fadli, N.; Grinblat, M.; Roberts, T.E.; McFadden, C.S.; Miller, D.J.; Baird, A.H. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol. Phylogenetics Evol. 2020, 153, 106944. [Google Scholar] [CrossRef]
- Howells, E.J.; Bauman, A.G.; Vaughan, G.O.; Hume, B.C.C.; Voolstra, C.R.; Burt, J.A. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 2020, 29, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, D.J.; Kemp, D.W.; Bruns, B.U.; Fitt, W.K.; Schmidt, G.W. Correspondence between cold tolerance and temperate biogeography in a Western Altantic Symbiodinium (Dinophyta) lineage. J. Phycol. 2008, 44, 1126–1135. [Google Scholar] [CrossRef]
- Coffroth, M.A.; Poland, D.M.; Petrou, E.L.; Brazeau, D.A.; Holmberg, J.C. Environmental Symbiont Acquisition May Not Be the Solution to Warming Seas for Reef-Building Corals. PLoS ONE 2010, 5, e13258. [Google Scholar] [CrossRef] [Green Version]
- Howells, E.J.; Abrego, D.; Meyer, E.; Kirk, N.L.; Burt, J.A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Chang. Biol. 2016, 22, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- Abrego, D.; Willis, B.L.; van Oppen, M.J.H. Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles. PLoS ONE 2012, 7, e50311. [Google Scholar]
- Mieog, J.C.; Olsen, J.L.; Berkelmans, R.; Bleuler-Martinez, S.A.; Willis, B.L.; Van Oppen, M.J.H. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 2009, 4, e6364. [Google Scholar] [CrossRef]
- Peixoto, R.S.; Rosado, P.M.; Leite, D.C.d.A.; Rosado, A.S.; Bourne, D.G. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front. Microbiol. 2017, 8, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Oppen, M.J.H.; Blackall, L.L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 2019, 17, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Agreda, A.; Legatt, W.; Bongaerts, P.; Ainsworth, T.D. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. mBio 2016, 7, e00560-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDevitt-Irwin, J.M.; Baum, J.K.; Garren, M.; Vega Thurber, R.L. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors. Front. Mar. Sci. 2017, 4, 262. [Google Scholar] [CrossRef] [Green Version]
- Fairfull, S.J.L.; Harriott, V.J. Succession, space and coral recruitment in a subtropical fouling community. Mar. Freshw. Res. 1999, 50, 235–242. [Google Scholar] [CrossRef]
- Risk, M. Assessing the effects of sediments and nutrients on coral reefs. Curr. Opin. Environ. Sustain. 2014, 7, 108–117. [Google Scholar] [CrossRef]
- Zabala, M.; Ballesteros, E.S. Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Sci. Mar. 1989, 53, 3–17. [Google Scholar]
- Harriott, V.; Smith, S. Coral population dynamics in a subtropical coral community, Solitary Islands Marine Park, Australia. In Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000; 2002; pp. 573–581. [Google Scholar]
- Vergés, A.; Doropoulos, C.; Malcolm, H.A.; Skye, M.; Garcia-Pizá, M.; Marzinelli, E.M.; Campbell, A.H.; Ballesteros, E.; Hoey, A.S.; Vila-Concejo, A.; et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. USA 2016, 113, 13791–13796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimbs, M.J.; Smith, S.D.A. Beyond Capricornia: Tropical Sea Slugs (Gastropoda, Heterobranchia) Extend Their Distributions into the Tasman Sea. Diversity 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Nishi, E. Dense aggregation of Chaetopterus longipes Crosslan, 1904 (Chaetopteridae, Polychaeta) in coral reefs at Okinawa, Japan. Nat. Hist. Res. 1996, 4, 41–47. [Google Scholar]
- Smith, S.D.A.; Harriot, V.J. Tube-building polychaete worms smother corals in the Solitary Islands Marine Park, northern NSW, Australia. Coral Reefs 1998, 17, 342. [Google Scholar] [CrossRef]
- Kuguru, B.; Mgaya, Y.; Öhman, M.; Wagner, G. The reef environment and competitive success in the Corallimorpharia. Mar. Biol. 2004, 145, 875–884. [Google Scholar] [CrossRef]
- Langmead, O.; Chadwick, N. Marginal tentacles of the corallimorpharian Rhodactis rhodostoma. 1. Role in competition for space. Mar. Biol. 1999, 134, 479–489. [Google Scholar] [CrossRef]
- Adams, L.M.; Cumbo, V.R.; Takabayashi, M. Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar. Ecol. Prog. Ser. 2009, 377, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Cumbo, V.R.; van Oppen, M.J.H.; Baird, A.H. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar. Ecol. Prog. Ser. 2018, 587, 117–127. [Google Scholar] [CrossRef]
- Venera-Ponton, D.E.; Diaz-Pulido, G.; Rodriguez-Lanetty, M.; Hoegh-Guldberg, O. Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef. Coral Reefs 2010, 29, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Little, A.F.; van Oppen, M.J.H.; Willis, B.L. Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science 2004, 304, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Abrego, D.; Ulstrup, K.; Willis, B.; van Oppen, M. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc. R. Soc. B 2008, 275, 2273–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrego, D.; Howells, E.J.; Smith, S.D.A.; Madin, J.S.; Sommer, B.; Schmidt-Roach, S.; Cumbo, V.R.; Thomson, D.P.; Rosser, N.L.; Baird, A.H. Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. Diversity 2021, 13, 632. https://doi.org/10.3390/d13120632
Abrego D, Howells EJ, Smith SDA, Madin JS, Sommer B, Schmidt-Roach S, Cumbo VR, Thomson DP, Rosser NL, Baird AH. Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. Diversity. 2021; 13(12):632. https://doi.org/10.3390/d13120632
Chicago/Turabian StyleAbrego, David, Emily J. Howells, Stephen D. A. Smith, Joshua S. Madin, Brigitte Sommer, Sebastian Schmidt-Roach, Vivian R. Cumbo, Damian P. Thomson, Natalie L. Rosser, and Andrew H. Baird. 2021. "Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions" Diversity 13, no. 12: 632. https://doi.org/10.3390/d13120632
APA StyleAbrego, D., Howells, E. J., Smith, S. D. A., Madin, J. S., Sommer, B., Schmidt-Roach, S., Cumbo, V. R., Thomson, D. P., Rosser, N. L., & Baird, A. H. (2021). Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. Diversity, 13(12), 632. https://doi.org/10.3390/d13120632