Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments?
Abstract
:1. Introduction
2. Methods
2.1. Study Sites and Surveys
2.2. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Culver, D.C.; Pipan, T. (Eds.) The Biology of Caves and Other Subterranean Habitats, 3rd ed.; Oxford University Press: New York, NY, USA, 2019; p. 336. [Google Scholar]
- Moldovan, O.T.; Kovác, L.; Halse, S. Cave Ecology; Springer Nature Switzerland: Cham, Switzerland, 2018. [Google Scholar]
- Romero, A. Cave Biology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Christiansen, K. Proposition pour la classification des animaux cavernicoles. Spelunca 1962, 2, 76–78. [Google Scholar]
- Mammola, S.; Isaia, M. Spiders in cave. Proc. R. Soc. B 2017, 284, 20170193. [Google Scholar] [CrossRef] [Green Version]
- Mammola, S. Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography 2019, 42, 1331–1351. [Google Scholar] [CrossRef] [Green Version]
- Barr, T.C.J. Cave ecology and the evolution of troglobites. Evol. Biol. 1968, 2, 35–102. [Google Scholar]
- Culver, D.C.; Holsinger, J.R. How many species of troglobites are there? Bull. Natl. Speleol. Soc. 1992, 54, 79–80. [Google Scholar]
- Ficetola, G.F.; Canedoli, C.; Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 2019, 33, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Fernández, D.; Rizzo, V.; Bourdeau, C.; Cieslak, A.; Comas, J.; Faille, A.; Fresneda, J.; Lleopart, E.; Millán, A.; Montes, A.; et al. The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Canedoli, C.; Padoa-Schioppa, E.; Pennati, R.; Manenti, R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 2018, 8, 10575. [Google Scholar] [CrossRef]
- Sharma, S.; Coombs, S.; Patton, P.; Burt de Perera, T. The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J. Comp. Physiol. A Neuroethol. Sens. NeuralBehav. Physiol. 2009, 195, 225–240. [Google Scholar] [CrossRef]
- Varatharasan, N.; Croll, R.P.; Franz-Odendaal, T. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus. Dev. Dyn. 2009, 238, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Parzefall, J.; Körner, K.E.; Schlupp, I. Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav. Ecol. Sociobiol. 2004, 55, 596–601. [Google Scholar] [CrossRef]
- Biswas, J. Kotumsar cave ecosystem: An interaction between geophysical, chemical, and biological characteristics. NSS Bull. 1992, 54, 7–10. [Google Scholar]
- Howarth, F.G.; Moldovan, O.T. The ecological classification of cave animals and their adaptations. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–67. [Google Scholar]
- Hervant, F.; Mathieu, J.; Durand, J. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J. Exp. Biol. 2001, 204, 269–281. [Google Scholar] [PubMed]
- Christiansen, K.A. Morphological adaptations. In Encyclopedia of Caves; White, W., Culver, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 386–397. [Google Scholar]
- Parzefall, J.; Trajano, E. Behavioral patterns in subterranean fishes. In Biology of Subterranean Fishes; Trajano, E., Bichuette, M.E., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 81–114. [Google Scholar]
- Lipovšek, S.; Leitinger, G.; Janžekovič, F.; Kozel, P.; Dariš, B.; Perc, M.; Devetak, D.; Weiland, N.; Novak, T. Towards understanding partial adaptation to the subterranean habitat in the European cave spider, Meta menardi: An ecocytological approach. Sci. Rep. 2019, 9, 9121. [Google Scholar] [CrossRef] [PubMed]
- Dietz, C.; Kiefer, A. Bats of Britain and Europe; Bloomsbury: London, UK, 2016. [Google Scholar]
- Hesselberg, T.; Simonsen, D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). Subterr. Biol. 2019, 32, 1–13. [Google Scholar] [CrossRef]
- Manenti, R.; Siesa, M.E.; Ficetola, G.F. Odonata occurrence in caves: Active or accidentals? A new case study. J. Cave Karst. Stud. 2013, 75, 205–209. [Google Scholar] [CrossRef]
- Aljančič, G. History of research on Proteus anguinus Laurenti 1768 in Slovenia. Folia Biol. Geol. 2019, 60, 39–69. [Google Scholar] [CrossRef]
- Poulson, T.L. Cave adaptation in Amblyopsid fishes. Am. Midl. Nat. 1963, 70, 257–290. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 2020, 43, 1–11. [Google Scholar] [CrossRef]
- Culver, D.C.; Kane, T.C.; Fong, D.W. (Eds.) Adaptation and Natural Selection in Caves. The Evolution of Gammarus Minus; Harvard University Press: Cambridge, UK, 1995; p. 223. [Google Scholar]
- Trajano, E.; de Carvalho, M.R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 2017, 22, 1–26. [Google Scholar] [CrossRef]
- Lunghi, E.; Bruni, G.; Ficetola, G.F.; Manenti, R. Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Subterr. Biol. 2018, 25, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol. 2014, 55, 29–35. [Google Scholar] [CrossRef]
- Pape, R.B. The importance of ants in cave ecology, with new records and behavioral observations of ants in Arizona caves. Int. J. Speleol. 2016, 45, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Oosterbroek, P. Catalogue of the Craneflies of the World. Available online: https://ccw.naturalis.nl/ (accessed on 13 August 2020).
- de Jong, Y.; Verbeek, M.; Michelsen, V.; de Place Bjørn, P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetzner, J.W.J. The Crane Flies (Diptera: Tipulidae) of Pennsylvania. Available online: https://www.invertebratezoology.org/cranefly/idkeys.htm (accessed on 7 August 2020).
- Ebejer, M.J. The craneflies (Diptera, Tipulidae and Limoniidae) and winter gnats (Diptera, Trichoceridae) of Malta. Bull. Entomol. Soc. Malta 2015, 7, 51–55. [Google Scholar] [CrossRef]
- Freeman, B.E. Studies on the ecology of adult Tipulidae (Diptera) in Southern England. J. Anim. Ecol. 1968, 37, 339–362. [Google Scholar] [CrossRef]
- Service, M.W. Spatial and temporal distributions of aerial populations of woodland tipulids (Diptera). J. Anim. Ecol. 1973, 42, 295–303. [Google Scholar] [CrossRef]
- Di Russo, C.; Carchini, G.; Rampini, M.; Lucarelli, M.; Sbordoni, V. Long term stability of a terrestrial cave community. Int. J. Speleol. 1999, 26, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Østbye, E.; Lauritzen, S.-E. A checklist of invertebrates from Norwegian caves and mines. Fauna Nor. 2013, 33, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Kjærandsen, J. Diptera in mines and other cave systems in southern Norway. Entomol. Fenn. 1993, 4, 151–160. [Google Scholar] [CrossRef]
- Novak, T.; Sambol, J.; Janžekovič, F. Faunal dynamics in the Železna jama cave. Acta Carsologica 2004, 33, 249–267. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Ficetola, G.F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 2015, 134, 242–251. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Mulargia, M.; Cogoni, R.; Barzaghi, B.; Cornago, L.; Avitabile, D.; Veith, M.; Manenti, R.; et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 2018, 5, 180083. [Google Scholar] [CrossRef] [Green Version]
- Novak, T.; Tkavc, T.; Kuntner, M.; Arnett, A.E.; Lipovšek Delakorda, S.; Perc, M.; Janžekovič, F. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 2010, 36, 522–529. [Google Scholar] [CrossRef]
- Salvidio, S. Diet and food utilization in the European plethodontid Speleomantes ambrosii. Vie et Milieu 1992, 42, 35–39. [Google Scholar]
- Mazza, G.; Cianferoni, F.; Bottacci, A.; Zoccola, A. Primo contributo alla conoscenza della biospeleologia all’interno delle riserve naturali biogenetiche casentinesi (Parco Nazionale Foreste Casentinesi, Monte Falterona e Campigna) e zone limitrofe. Quad. Di Studi E Not. Di Stor. Nat. Della Romagna 2008, 27, 1–72. [Google Scholar]
- Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 2020, in press. [Google Scholar]
- Lunghi, E.; Corti, C.; Mulargia, M.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Veith, M. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers. Data J. 2020, 8, e48623. [Google Scholar] [CrossRef]
- Camp, C.D.; Jensen, J.B. Use of twilight zones of caves by plethodontid salamanders. Copeia 2007, 2007, 594–604. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Manenti, R.; Ficetola, G.F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 2019, 3, 319. [Google Scholar] [CrossRef] [PubMed]
- Crump, M.L.; Scott, N.J. Visual Encounter Surveys. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians; Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C., Foster, M.S., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1994; pp. 84–92. [Google Scholar]
- Lunghi, E. Ecology and life history of Meta bourneti (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy). PeerJ 2018, 6, e6049. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 2017, 5, e3169. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling. Inferring Patterns and Dynamics of Species Occurrence; Academic Press: San Diego, CA, USA, 2006. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Gorosito, I.L.; Bermúdez, M.M.; Douglass, R.J.; Busch, M. Evaluation of statistical methods and sampling designs for the assessment of microhabitat selection based on point data. Methods in Ecol. Evol. 2016, 1316–1324. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Bustamante, J.; Díaz-Paniagua, C.; Guisan, A. Integrating detection probabilities in species distribution models of amphibians breeding in Mediterranean temporary ponds. Divers. Distrib. 2012, 18, 260–272. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2008, 24, 127–135. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. 2017. Available online: http://CRAN.R-project.org/package=nlme (accessed on 7 July 2020).
- Lunghi, E.; Manenti, R.; Canciani, G.; Scarì, G.; Pennati, R.; Ficetola, G.F. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 2016, 60, 79–85. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef]
- White, W.; Culver, D.C.; Pipan, T. (Eds.) Encyclopedia of Caves; Academic Press: Waltham, UK, 2019; p. 1250. [Google Scholar]
- Plachter, P. Cave-dwelling flies in Central Europe: Adaptation to environment, especially to low temperatures (Diptera, Nematocera: Trichoceridae et Sciaridae). Oecologia 1983, 58, 367–372. [Google Scholar] [CrossRef]
- Petrašiūnas, A.; Weber, D. Winter crane flies (Insecta, Diptera, Trichoceridae) from caves of the Grand Duchy of Luxembourg. Ferrantia 2013, 69, 276–283. [Google Scholar]
- Hervant, F. Starvation in subterranean species versus surface-dwelling species: Crustaceans, fish, and salamanders. In Comparative Physiology of Fasting, Starvation, and Food Limitation; McCue, M.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 91–102. [Google Scholar]
- Lunghi, E.; Zhao, Y. Do Chinese cavefish show intraspecific variability in morphological traits? Ecol. Evol. 2020, 10, 7723–7730. [Google Scholar] [CrossRef]
- Barnes, J.K.; Slay, M.E.; Taylor, S.J. Adult Diptera from Ozark Caves. Proc. Entomol. Soc. Wash. 2009, 111, 335–353. [Google Scholar] [CrossRef]
- Deban, S.M.; Dicke, U. Motor control of tongue movement during prey capture in Plethodontid salamanders. J. Exp. Biol. 1999, 202, 3699–3714. [Google Scholar] [PubMed]
- Deban, S.M.; Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 2004, 207, 2071–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Manenti, R.; Mancinelli, G.; Corti, C.; Ficetola, G.F. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 2018, 13, e0205672. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Barzaghi, B.; Melotto, A.; Falaschi, M.; Ficetola, G.F. Do salamanders limit the abundance of groundwater invertebrates in subterranean habitats? Diversity 2020, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Biswas, J.; Pradhan, R.K.; Pati, A.K. Studies on burying behaviour in epigean and hypogean fish, Oreonectus evezardi: An example of behavioural divergence. Mem. De Biospéleologie 1990, 17, 33–41. [Google Scholar]
- Bradley, J.G.; Eason, P.K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 2019, 155, 841–859. [Google Scholar] [CrossRef]
- Barzaghi, B.; Ficetola, G.F.; Pennati, R.; Manenti, R. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshw. Biol. 2017, 62, 1637–1644. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Elevation | Origin | Sectors |
---|---|---|---|---|---|
Site1 | 44.03 | 10.25 | 872 | N | 5 |
Site2 | 43.97 | 10.53 | 91 | N | 11 |
Site3 | 43.93 | 11.16 | 624 | N | 10 |
Site4 | 44.04 | 10.25 | 889 | N | 5 |
Site5 | 44.04 | 10.25 | 875 | N | 3 |
Site6 | 43.92 | 11.14 | 286 | N | 4 * |
Site7 | 43.92 | 11.14 | 319 | N | 17 |
Site8 | 44.00 | 10.82 | 948 | S | 4 |
Site9 | 44.00 | 10.82 | 853 | S | 5 |
Site10 | 44.00 | 10.82 | 850 | S | 7 |
Site11 | 44.04 | 10.86 | 744 | A | 6 * |
Site12 | 43.92 | 11.16 | 699 | N | 2 |
Site13 | 43.92 | 11.16 | 715 | N | 14 |
Site14 | 43.97 | 11.16 | 492 | N | 20 |
Site15 | 44.06 | 10.31 | 556 | N | 8 |
Independent Variables Included in the Model | df | AICc | ∆-AICc | Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth | Het | Humid | Lux | Temp | Month | Width | Height | Temp × M | ||||
−0.085 | −0.07 | −0.62 | 0.18 | + | + | 29 | 589.9 | 0 | 0.164 | |||
−0.084 | −0.62 | 0.18 | + | 0.07 | + | 29 | 590.4 | 0.44 | 0.131 | |||
−0.079 | −0.07 | −1.98 | −0.64 | 0.20 | + | + | 30 | 590.9 | 0.99 | 0.100 | ||
−0.084 | −0.59 | 0.18 | + | −0.06 | + | 29 | 591.3 | 1.39 | 0.082 | |||
−0.078 | −2.03 | −0.62 | 0.2 | + | 0.06 | + | 30 | 591.3 | 1.40 | 0.081 |
Factor | B | χ21 | P |
---|---|---|---|
Temperature | 0.18 | 37.98 | <0.001 |
Month | 267.57 | <0.001 | |
Sector | −0.09 | 0.01 | 0.001 |
Wall heterogeneity | −0.07 | 13.83 | <0.001 |
Lux | −0.6 | 22.04 | <0.001 |
Month × Temperature | 27.79 | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunghi, E.; Ficetola, G.F.; Zhao, Y.; Manenti, R. Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity 2020, 12, 333. https://doi.org/10.3390/d12090333
Lunghi E, Ficetola GF, Zhao Y, Manenti R. Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity. 2020; 12(9):333. https://doi.org/10.3390/d12090333
Chicago/Turabian StyleLunghi, Enrico, Gentile Francesco Ficetola, Yahui Zhao, and Raoul Manenti. 2020. "Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments?" Diversity 12, no. 9: 333. https://doi.org/10.3390/d12090333
APA StyleLunghi, E., Ficetola, G. F., Zhao, Y., & Manenti, R. (2020). Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity, 12(9), 333. https://doi.org/10.3390/d12090333