Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments?
Abstract
1. Introduction
2. Methods
2.1. Study Sites and Surveys
2.2. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Culver, D.C.; Pipan, T. (Eds.) The Biology of Caves and Other Subterranean Habitats, 3rd ed.; Oxford University Press: New York, NY, USA, 2019; p. 336. [Google Scholar]
- Moldovan, O.T.; Kovác, L.; Halse, S. Cave Ecology; Springer Nature Switzerland: Cham, Switzerland, 2018. [Google Scholar]
- Romero, A. Cave Biology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Christiansen, K. Proposition pour la classification des animaux cavernicoles. Spelunca 1962, 2, 76–78. [Google Scholar]
- Mammola, S.; Isaia, M. Spiders in cave. Proc. R. Soc. B 2017, 284, 20170193. [Google Scholar] [CrossRef]
- Mammola, S. Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography 2019, 42, 1331–1351. [Google Scholar] [CrossRef]
- Barr, T.C.J. Cave ecology and the evolution of troglobites. Evol. Biol. 1968, 2, 35–102. [Google Scholar]
- Culver, D.C.; Holsinger, J.R. How many species of troglobites are there? Bull. Natl. Speleol. Soc. 1992, 54, 79–80. [Google Scholar]
- Ficetola, G.F.; Canedoli, C.; Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 2019, 33, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef]
- Sánchez-Fernández, D.; Rizzo, V.; Bourdeau, C.; Cieslak, A.; Comas, J.; Faille, A.; Fresneda, J.; Lleopart, E.; Millán, A.; Montes, A.; et al. The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Canedoli, C.; Padoa-Schioppa, E.; Pennati, R.; Manenti, R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 2018, 8, 10575. [Google Scholar] [CrossRef]
- Sharma, S.; Coombs, S.; Patton, P.; Burt de Perera, T. The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J. Comp. Physiol. A Neuroethol. Sens. NeuralBehav. Physiol. 2009, 195, 225–240. [Google Scholar] [CrossRef]
- Varatharasan, N.; Croll, R.P.; Franz-Odendaal, T. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus. Dev. Dyn. 2009, 238, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Parzefall, J.; Körner, K.E.; Schlupp, I. Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav. Ecol. Sociobiol. 2004, 55, 596–601. [Google Scholar] [CrossRef]
- Biswas, J. Kotumsar cave ecosystem: An interaction between geophysical, chemical, and biological characteristics. NSS Bull. 1992, 54, 7–10. [Google Scholar]
- Howarth, F.G.; Moldovan, O.T. The ecological classification of cave animals and their adaptations. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–67. [Google Scholar]
- Hervant, F.; Mathieu, J.; Durand, J. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J. Exp. Biol. 2001, 204, 269–281. [Google Scholar] [PubMed]
- Christiansen, K.A. Morphological adaptations. In Encyclopedia of Caves; White, W., Culver, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 386–397. [Google Scholar]
- Parzefall, J.; Trajano, E. Behavioral patterns in subterranean fishes. In Biology of Subterranean Fishes; Trajano, E., Bichuette, M.E., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 81–114. [Google Scholar]
- Lipovšek, S.; Leitinger, G.; Janžekovič, F.; Kozel, P.; Dariš, B.; Perc, M.; Devetak, D.; Weiland, N.; Novak, T. Towards understanding partial adaptation to the subterranean habitat in the European cave spider, Meta menardi: An ecocytological approach. Sci. Rep. 2019, 9, 9121. [Google Scholar] [CrossRef] [PubMed]
- Dietz, C.; Kiefer, A. Bats of Britain and Europe; Bloomsbury: London, UK, 2016. [Google Scholar]
- Hesselberg, T.; Simonsen, D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). Subterr. Biol. 2019, 32, 1–13. [Google Scholar] [CrossRef]
- Manenti, R.; Siesa, M.E.; Ficetola, G.F. Odonata occurrence in caves: Active or accidentals? A new case study. J. Cave Karst. Stud. 2013, 75, 205–209. [Google Scholar] [CrossRef]
- Aljančič, G. History of research on Proteus anguinus Laurenti 1768 in Slovenia. Folia Biol. Geol. 2019, 60, 39–69. [Google Scholar] [CrossRef]
- Poulson, T.L. Cave adaptation in Amblyopsid fishes. Am. Midl. Nat. 1963, 70, 257–290. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 2020, 43, 1–11. [Google Scholar] [CrossRef]
- Culver, D.C.; Kane, T.C.; Fong, D.W. (Eds.) Adaptation and Natural Selection in Caves. The Evolution of Gammarus Minus; Harvard University Press: Cambridge, UK, 1995; p. 223. [Google Scholar]
- Trajano, E.; de Carvalho, M.R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 2017, 22, 1–26. [Google Scholar] [CrossRef]
- Lunghi, E.; Bruni, G.; Ficetola, G.F.; Manenti, R. Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Subterr. Biol. 2018, 25, 49–60. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol. 2014, 55, 29–35. [Google Scholar] [CrossRef]
- Pape, R.B. The importance of ants in cave ecology, with new records and behavioral observations of ants in Arizona caves. Int. J. Speleol. 2016, 45, 185–205. [Google Scholar] [CrossRef]
- Oosterbroek, P. Catalogue of the Craneflies of the World. Available online: https://ccw.naturalis.nl/ (accessed on 13 August 2020).
- de Jong, Y.; Verbeek, M.; Michelsen, V.; de Place Bjørn, P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [PubMed]
- Fetzner, J.W.J. The Crane Flies (Diptera: Tipulidae) of Pennsylvania. Available online: https://www.invertebratezoology.org/cranefly/idkeys.htm (accessed on 7 August 2020).
- Ebejer, M.J. The craneflies (Diptera, Tipulidae and Limoniidae) and winter gnats (Diptera, Trichoceridae) of Malta. Bull. Entomol. Soc. Malta 2015, 7, 51–55. [Google Scholar] [CrossRef]
- Freeman, B.E. Studies on the ecology of adult Tipulidae (Diptera) in Southern England. J. Anim. Ecol. 1968, 37, 339–362. [Google Scholar] [CrossRef]
- Service, M.W. Spatial and temporal distributions of aerial populations of woodland tipulids (Diptera). J. Anim. Ecol. 1973, 42, 295–303. [Google Scholar] [CrossRef]
- Di Russo, C.; Carchini, G.; Rampini, M.; Lucarelli, M.; Sbordoni, V. Long term stability of a terrestrial cave community. Int. J. Speleol. 1999, 26, 75–88. [Google Scholar] [CrossRef]
- Østbye, E.; Lauritzen, S.-E. A checklist of invertebrates from Norwegian caves and mines. Fauna Nor. 2013, 33, 35–51. [Google Scholar] [CrossRef]
- Kjærandsen, J. Diptera in mines and other cave systems in southern Norway. Entomol. Fenn. 1993, 4, 151–160. [Google Scholar] [CrossRef]
- Novak, T.; Sambol, J.; Janžekovič, F. Faunal dynamics in the Železna jama cave. Acta Carsologica 2004, 33, 249–267. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Ficetola, G.F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 2015, 134, 242–251. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Mulargia, M.; Cogoni, R.; Barzaghi, B.; Cornago, L.; Avitabile, D.; Veith, M.; Manenti, R.; et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 2018, 5, 180083. [Google Scholar] [CrossRef]
- Novak, T.; Tkavc, T.; Kuntner, M.; Arnett, A.E.; Lipovšek Delakorda, S.; Perc, M.; Janžekovič, F. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 2010, 36, 522–529. [Google Scholar] [CrossRef]
- Salvidio, S. Diet and food utilization in the European plethodontid Speleomantes ambrosii. Vie et Milieu 1992, 42, 35–39. [Google Scholar]
- Mazza, G.; Cianferoni, F.; Bottacci, A.; Zoccola, A. Primo contributo alla conoscenza della biospeleologia all’interno delle riserve naturali biogenetiche casentinesi (Parco Nazionale Foreste Casentinesi, Monte Falterona e Campigna) e zone limitrofe. Quad. Di Studi E Not. Di Stor. Nat. Della Romagna 2008, 27, 1–72. [Google Scholar]
- Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 2020, in press. [Google Scholar]
- Lunghi, E.; Corti, C.; Mulargia, M.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Veith, M. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers. Data J. 2020, 8, e48623. [Google Scholar] [CrossRef]
- Camp, C.D.; Jensen, J.B. Use of twilight zones of caves by plethodontid salamanders. Copeia 2007, 2007, 594–604. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Manenti, R.; Ficetola, G.F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 2019, 3, 319. [Google Scholar] [CrossRef] [PubMed]
- Crump, M.L.; Scott, N.J. Visual Encounter Surveys. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians; Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C., Foster, M.S., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1994; pp. 84–92. [Google Scholar]
- Lunghi, E. Ecology and life history of Meta bourneti (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy). PeerJ 2018, 6, e6049. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 2017, 5, e3169. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling. Inferring Patterns and Dynamics of Species Occurrence; Academic Press: San Diego, CA, USA, 2006. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Gorosito, I.L.; Bermúdez, M.M.; Douglass, R.J.; Busch, M. Evaluation of statistical methods and sampling designs for the assessment of microhabitat selection based on point data. Methods in Ecol. Evol. 2016, 1316–1324. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Bustamante, J.; Díaz-Paniagua, C.; Guisan, A. Integrating detection probabilities in species distribution models of amphibians breeding in Mediterranean temporary ponds. Divers. Distrib. 2012, 18, 260–272. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2008, 24, 127–135. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. 2017. Available online: http://CRAN.R-project.org/package=nlme (accessed on 7 July 2020).
- Lunghi, E.; Manenti, R.; Canciani, G.; Scarì, G.; Pennati, R.; Ficetola, G.F. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 2016, 60, 79–85. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef]
- White, W.; Culver, D.C.; Pipan, T. (Eds.) Encyclopedia of Caves; Academic Press: Waltham, UK, 2019; p. 1250. [Google Scholar]
- Plachter, P. Cave-dwelling flies in Central Europe: Adaptation to environment, especially to low temperatures (Diptera, Nematocera: Trichoceridae et Sciaridae). Oecologia 1983, 58, 367–372. [Google Scholar] [CrossRef]
- Petrašiūnas, A.; Weber, D. Winter crane flies (Insecta, Diptera, Trichoceridae) from caves of the Grand Duchy of Luxembourg. Ferrantia 2013, 69, 276–283. [Google Scholar]
- Hervant, F. Starvation in subterranean species versus surface-dwelling species: Crustaceans, fish, and salamanders. In Comparative Physiology of Fasting, Starvation, and Food Limitation; McCue, M.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 91–102. [Google Scholar]
- Lunghi, E.; Zhao, Y. Do Chinese cavefish show intraspecific variability in morphological traits? Ecol. Evol. 2020, 10, 7723–7730. [Google Scholar] [CrossRef]
- Barnes, J.K.; Slay, M.E.; Taylor, S.J. Adult Diptera from Ozark Caves. Proc. Entomol. Soc. Wash. 2009, 111, 335–353. [Google Scholar] [CrossRef]
- Deban, S.M.; Dicke, U. Motor control of tongue movement during prey capture in Plethodontid salamanders. J. Exp. Biol. 1999, 202, 3699–3714. [Google Scholar] [PubMed]
- Deban, S.M.; Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 2004, 207, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Manenti, R.; Mancinelli, G.; Corti, C.; Ficetola, G.F. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 2018, 13, e0205672. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Barzaghi, B.; Melotto, A.; Falaschi, M.; Ficetola, G.F. Do salamanders limit the abundance of groundwater invertebrates in subterranean habitats? Diversity 2020, 12, 161. [Google Scholar] [CrossRef]
- Biswas, J.; Pradhan, R.K.; Pati, A.K. Studies on burying behaviour in epigean and hypogean fish, Oreonectus evezardi: An example of behavioural divergence. Mem. De Biospéleologie 1990, 17, 33–41. [Google Scholar]
- Bradley, J.G.; Eason, P.K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 2019, 155, 841–859. [Google Scholar] [CrossRef]
- Barzaghi, B.; Ficetola, G.F.; Pennati, R.; Manenti, R. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshw. Biol. 2017, 62, 1637–1644. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Elevation | Origin | Sectors |
---|---|---|---|---|---|
Site1 | 44.03 | 10.25 | 872 | N | 5 |
Site2 | 43.97 | 10.53 | 91 | N | 11 |
Site3 | 43.93 | 11.16 | 624 | N | 10 |
Site4 | 44.04 | 10.25 | 889 | N | 5 |
Site5 | 44.04 | 10.25 | 875 | N | 3 |
Site6 | 43.92 | 11.14 | 286 | N | 4 * |
Site7 | 43.92 | 11.14 | 319 | N | 17 |
Site8 | 44.00 | 10.82 | 948 | S | 4 |
Site9 | 44.00 | 10.82 | 853 | S | 5 |
Site10 | 44.00 | 10.82 | 850 | S | 7 |
Site11 | 44.04 | 10.86 | 744 | A | 6 * |
Site12 | 43.92 | 11.16 | 699 | N | 2 |
Site13 | 43.92 | 11.16 | 715 | N | 14 |
Site14 | 43.97 | 11.16 | 492 | N | 20 |
Site15 | 44.06 | 10.31 | 556 | N | 8 |
Independent Variables Included in the Model | df | AICc | ∆-AICc | Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth | Het | Humid | Lux | Temp | Month | Width | Height | Temp × M | ||||
−0.085 | −0.07 | −0.62 | 0.18 | + | + | 29 | 589.9 | 0 | 0.164 | |||
−0.084 | −0.62 | 0.18 | + | 0.07 | + | 29 | 590.4 | 0.44 | 0.131 | |||
−0.079 | −0.07 | −1.98 | −0.64 | 0.20 | + | + | 30 | 590.9 | 0.99 | 0.100 | ||
−0.084 | −0.59 | 0.18 | + | −0.06 | + | 29 | 591.3 | 1.39 | 0.082 | |||
−0.078 | −2.03 | −0.62 | 0.2 | + | 0.06 | + | 30 | 591.3 | 1.40 | 0.081 |
Factor | B | χ21 | P |
---|---|---|---|
Temperature | 0.18 | 37.98 | <0.001 |
Month | 267.57 | <0.001 | |
Sector | −0.09 | 0.01 | 0.001 |
Wall heterogeneity | −0.07 | 13.83 | <0.001 |
Lux | −0.6 | 22.04 | <0.001 |
Month × Temperature | 27.79 | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunghi, E.; Ficetola, G.F.; Zhao, Y.; Manenti, R. Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity 2020, 12, 333. https://doi.org/10.3390/d12090333
Lunghi E, Ficetola GF, Zhao Y, Manenti R. Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity. 2020; 12(9):333. https://doi.org/10.3390/d12090333
Chicago/Turabian StyleLunghi, Enrico, Gentile Francesco Ficetola, Yahui Zhao, and Raoul Manenti. 2020. "Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments?" Diversity 12, no. 9: 333. https://doi.org/10.3390/d12090333
APA StyleLunghi, E., Ficetola, G. F., Zhao, Y., & Manenti, R. (2020). Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? Diversity, 12(9), 333. https://doi.org/10.3390/d12090333