Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19
Abstract
:1. Introduction—Why Do Plants Produce Antiviral Substances
2. Antiviral PSM
2.1. Evidence for the Antiviral Activity of PSMs
2.2. Mode of Action
2.2.1. Lipophilic Terpenoids (Essential Oils)
2.2.2. Phenolics and Polyphenols
2.2.3. DNA and RNA–DNA Alkylation and DNA Intercalation
PSM | Type | Occurrence | Activity | Anti-Viral Activity | Ref. |
---|---|---|---|---|---|
Sanguinarine, chelerythrine, chelidonine | Isoquinoline alkaloids | Papaveraceae | Very strong DNA intercalator | HSV, HIV, HIV, influenza | [23,24] |
Berberine, berbamine, berberrubine, coptisine, dicentrine, jatrorrhizine, palmatine | Isoquinoline alkaloids | Berberidaceae, Papaveraceae | Strong DNA intercalator | SARS-CoV, HSV, CHIKV, hepatitis C | [25,26,27,28,29] |
Tetrandrine, fangcholine, cepharanthine | Isoquinoline alkaloids | Menispermaceae | DNA intercalator | SARS-CoV | [30] |
Quinine, quinidine, cinchonine, cinchonidine | Quinoline alkaloids | Rubiaceae | DNA intercalation, inhibition of DNA polymerase | HSV, influenza, DENV | [31] |
Emetine | Quinoline alkaloids | Rubiaceae | DNA intercalation, inhibition of DNA polymerase, Topoisomerase, Reverse transcriptase, protein synthesis | HIV, HSV, Inhibits pseudorabies Semliki Forest | [27,32,33] |
Dictamine, ellipticine, evolitrine, fagarine, skimmianine | Quinoline alkaloids | Rutaceae | DNA intercalation | [13] | |
Cryptolepine | Quinoline alkaloids | Apocynaceae | DNA intercalation | Antimicrobial | [13] |
Harmine, harmaline | β-Carboline alkaloids | Zygophyllaceae | DNA intercalation, inhibition of DNA polymerase, Topoisomerase, Reverse transcriptase | HSV, MCMV, influenza | [33] |
3. Relevance for Coronavirus SARS-CoV-2 and COVID-19
4. Are Plant Drugs with Intercalating Alkaloids Antiviral and Potentially Useful against SARS-CoV-2 and COVID-19?
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wink, M. Evolution of the Angiosperms and co-Evolution of Secondary Metabolites, Especially of Alkaloids. In Co-Evolution of Secondary Metabolites; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Heidelberg, Germany, 2020; pp. 1–24. [Google Scholar] [CrossRef]
- Harborne, J.B. Introduction to Ecological Biochemistry, 4th ed.; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Wink, M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genetics 1988, 75, 225–233. [Google Scholar] [CrossRef]
- Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef]
- Wink, M. Biochemistry of Plant Secondary Metabolism; Annual Plant Reviews; Wiley-Blackwell: Oxford, GB, USA, 2010; Volume 40. [Google Scholar]
- Reichling, J. Plant—Microbe Interactions and Secondary Metabolites with Antibacterial, Antifungal and Antiviral Properties. In Functions and Biotechnology of Plant Secondary Metabolites; Annual Plant Reviews 39; Wink, M., Ed.; Wiley-Blackwell: Oxford, GB, USA, 2010; pp. 214–347. [Google Scholar]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral natural products and herbal medicines. J. Trad. Complement. Med. 2014, 4, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res. 2008, 131, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Peng, T. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antivir. Res. 2013, 97, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018, 32, 811–822. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Sana, U.; Khan, R.U.; Alagawany, M.; et al. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens—Current knowledge and future prospects. Curr. Drug. Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, B.-E.; Wink, M. Medicinal Plants of the World, 2nd ed.; CABI: Wallingford, UK, 2017. [Google Scholar]
- Tok, T.T.; Tatar, G. Structures and functions of coronavirus proteins: Molecular modeling of viral nucleoprotein. Int. J. Virol. Infect. Dis. 2017, 2, 1–7. [Google Scholar]
- Yang, Y.; Sahidul Islam, M.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese Medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci. 2020, 16, 1708–1717. [Google Scholar] [CrossRef]
- Alberts, B. Molecular Biology of the Cell, 6th ed.; Garland Science: New York, NY, USA, 2015. [Google Scholar]
- Herrmann, F.; Romero, M.R.; Blazquez, A.G.; Kahl, S.; Kaufmann, D.; Marin, J.J.G.; Efferth, T.; Wink, M. Cytotoxicity and antiviral screening of 82 plants from Chinese and European phytomedicine. Diversity 2015, 3, 547–580. [Google Scholar] [CrossRef] [Green Version]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Molecular modes of action of cytotoxic alkaloids- From DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids 2007, 64, 1–48. [Google Scholar] [PubMed]
- Wink, M.; Schmeller, T.; Latz-Brüning, B. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA and other molecular targets. J. Chem. Ecol. 1998, 24, 1881–1937. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Molecular Modes of Action of Defensive Secondary Metabolites. In Functions and Biotechnology of Plant Secondary Metabolites; Annual Plant Reviews 39; Wink, M., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 21–161. [Google Scholar]
- Schmeller, T.; Latz-Brüning, B.; Wink, M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 1997, 44, 257–266. [Google Scholar] [CrossRef]
- Bombardelli, E.; Fontana, G.; Morazzoni, P.; Riva, A.; Ronchi, M. Formulations with Sanguinarine, Chelerythrine or Chelidonine for the Treatment of Warts, Verrucas and Psoriatic Plaques. Canada Patent CA2718384A1, 17 September 2009. [Google Scholar]
- Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Liu, L. Sanguinaria canadensis: Traditional medicine, phytochemical composition, biological activities and current uses. Int. J. Mol. Sci. 2016, 17, 1414. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Shin, H.S.; Park, H.; Kim, Y.C.; Yun, J.G.; Park, S.; Shin, H.J.; Kim, K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol. 2008, 41, 122–128. [Google Scholar] [CrossRef]
- Chin, L.W.; Cheng, Y.; Lin, S. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch. Virol. 2010, 155, 1933–1941. [Google Scholar] [CrossRef]
- Varghese, F.S.; Kaukinen, P.; Gläsker, S.; Bespalov, M.; Hanski, L.; Wennerberg, K.; Kümmerer, B.M.; Ahola, T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res. 2016, 126, 117–124. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.Q.; Kim, Y.J.; Wu, J.; Wang, Q.; Hao, Y. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin. J. Integr. Med. 2011, 17, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.C.; Jassey, A.; Liu, C.H.; Lin, C.J.; Lin, C.C.; Wong, S.H.; Wang, J.Y.; Yen, M.H.; Lin, L.T. Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine 2019, 53, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H. Natural bis-benzylisoquinoline alkaloids—Tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D.P.; Ferrante, P.; Delbue, S. The use of antimalarial drugs against viral infection. Microorganisms 2020, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Bleasel, M.D.; Peterson, G.M. Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals 2020, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.M. Antiviral activity of compounds isolated from plants. Pharm. Biol. 2003, 41, 107–157. [Google Scholar] [CrossRef]
- Wink, M.; Van Wyk, B.E. Mind-Altering and Poisonous Plants of the World; Briza Press: Pretoria, South Africa, 2008. [Google Scholar]
- Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res. 2005, 67, 18–23. [Google Scholar] [CrossRef]
- Chen, C.N.; Lin, C.P.C.; Huang, K.K.; Chen, W.C.; Hsieh, H.P.; Liang, P.H.; Hsu, J.T.H. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3’-digallate (TF3). Evid.-Based Complement. Altern. Med. 2005. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.C.; Shyur, L.F.; Jan, J.T.; Liang, P.H.; Arulselvan, P.; Wu, J.B.; Kuo, S.C.; Yang, N.S. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J. Trad. Complement. Med. 2011, 1, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef]
- Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Michaelis, M.; Hsu, H.K.; Tsai, C.C.; Yang, K.D.; Wu, Y.C.; Cinatl, J.; Doerr, H.W. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol. 2008, 30, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Zou, G.; Fan, J.; Yuan, Z. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol. 2010, 155, 1325–1329. [Google Scholar] [CrossRef]
- Ho, Y.J.; Lu, J.W.; Huang, J.L.; Lai, Z.Z. Palmatine inhibits Zika virus infection by disrupting virus binding, entry, and stability. Biochem. Biophys. Res. Commun. 2019, 518, 732–738. [Google Scholar] [CrossRef] [PubMed]
Class | Abbreviation | Example/Disease |
---|---|---|
I. dsDNA (double-stranded DNA) | ||
Papilloma virus (Papillomaviridae) | HPV | Papilloma warts, cervical cancer |
Adenovirus (Adenoviridae) | HAdV | Infections of the respiratory tract |
Herpes simplex virus 1 (Herpesviridae) | HSV-1 | HV I (blisters on skin), HV II (blisters on genitals) |
Varicella zoster virus (Herpesviridae) | VZV | Chicken pox, shingles |
Epstein–Barr virus (Herpesviridae) | EPV | Mononucleosis, Burkitt lymphoma |
Smallpox virus (Poxviridae) | Smallpox | |
II. ssDNA (single/double-stranded DNA) | ||
Hepatitis B virus (Hepadnaviridae) | HBV | Hepatitis B |
III. dsRNA (double-stranded RNA) | ||
Reoviridae | Diarrhea viruses, diseases of the respiratory tract, tick fever | |
IV. ssRNA (working as mRNA) | ||
Coronavirus (Coronaviridae) | SARS-CoV-1, SARS-CoV-2; MERS-CoV | Common cold, respiratory disease; COVID-19 |
Poliovirus (Picornaviridae) | PV | Poliomyelitis |
Rhinovirus (Picornaviridae) | Common cold | |
Hepatitis A (Picornaviridae) | HAV | Hepatitis A |
Hepatitis C virus (Flaviviridae) | HCV | Hepatitis C |
Yellow fever (Flaviviridae) | Yellow fever | |
West Nile virus (Flaviviridae) | WNV | Flu-like symptoms |
Zika virus (Flaviviridae) | ZIKV | Flu-like symptoms |
Dengue virus (Flaviviridae) | DENV | Dengue fever |
V. ssRNA (used as matrix for mRNA synthesis) | ||
Paramyxovirus (Paramyxoviridae) | PMV | Measles, mumps |
Influenza virus (Orthomyxoviridae) | H1N1, H5N1 | Influenza |
VI. ssRNA (used as matrix for DNA synthesis) | ||
Retrovirus (Retroviridae) | HIV | RNA tumor viruses, HIV (AIDS) |
Virus | Class of PSM | Antiviral Activity | Reference(s) |
---|---|---|---|
HIV-1 | Alkaloids: buchapine, colchicine, schummannificine | IC50 0.1–10 µM | [6] |
Coumarins: calonolide A, inophyllum B | IC50: 0.04–2 µM | [6] | |
Polyphenols: flavonoids, isoflavonoids, lignans, tannins and other phenolic PSMs | IC50: 2–60 µg/mL | [6,8,9] | |
Triterpenes: betulinic acid, celasdine-B, ursolic acid | IC50: 1–20 µg/mL | [6] | |
HSV-1, HSV-2 | Alkaloids: quinolines (acronycine, citrusinine-1); piperidines (rohitukine, schumannificine) | IC50: 0.5–10 µg/mL | [6] |
Essential oils: Citrus, Eucalyptus, Hyssopus, Illicium, Leptospermum, Matricaria, Melaleuca, Mentha, Pinus, Santalum, Thymus, Zingiber and other aromatic plants | IC50: 0.0003%–0.0001% | [6,8,9] | |
Polyphenols: flavonoids (flavans and derivatives, naringenin, ternatin, galangin, quercetin, genistein), lignans (podophyllotoxin and derivatives, peltatin), tannins, and other phenolic PSM | IC50: 0.03–20 µg/mL | [6,8,9] | |
Triterpenes: ursonic acid, dammaradienol, dammarenolic acid, hydroxyhopanone | IC50: 2–20 µg/mL | [6] | |
HCMV | Artemisinin and derivatives | Good antiviral activity | [17] |
Flaviviridae (JEV, YFV, DV-4) | Alkaloids: isoquinolines (lycorine, narciclasine, pancratistatin, pretazettine) | IC50: 0.02–2 µg/mL | [6] |
Flaviviridae (bovine viral diarrhoea virus; BVDV) | Water extracts from Alpinia galanga and Alpinia oxyphylla, Celosia cristata, Houttuynia cordata, Ophioglossum vulgatum, and Selaginella tamariscina | Good antiviral activity without cytotoxicity | [17] |
Hepadnaviridae (HBV) | Water extracts from Evodia lepta, Glycyrrhiza spp. and Hedyotis diffusa | Good antiviral activity without cytotoxicity | [8,9] |
Bunyaviridae (PTV, RVFV) | Alkaloids: isoquinolines (lycorine, narciclasine, pancratistatin, pretazettine) | IC50: 0.007–3 µg/mL | [6] |
Picornaviridae (HRV-1B, COX) | Flavonoids (flavans and derivatives, galangin) | [6] | |
Orthomyxoviridae (INFA) | Flavonoids (flavans and derivatives, isoscutellarin) | [6] | |
Dengue virus | Essential oils: Artemisia, Eupatorium | IC50: 60–150 ppm | [6] |
Junin virus (Arenaviridae) | Essential oils: Aloysia, Buddleja, Lippia, Heterotheca, Heterothalamus, Tessaria | IC50: 14–63 ppm | [6] |
Rhabdoviridae (VSV) | Polyphenols: flavonoids: ternatin, lignans (peltatin, podophyllotoxin and derivatives), diphyllin, justicidin and derivatives | IC50: 1–20 µM | [6] |
Paramyxoviridae (RSV) | Flavonoids: flavans and derivatives, aescuflavoside and other phenolic PSMs | IC50: 1–20 µM | [6] |
Virus | Class of PSM | Main Findings | Reference |
---|---|---|---|
SARS-CoV-1 | Alkaloids tetrandrine, fangchinoline and cepharanthine | Inhibits expression of spike and nucleocapsid protein | [15] |
Alkaloids: lycorine and extract from Lycoris radiata | Extract: IC50 2.4 µg/mL Lycorine: IC50 15 nM | [35] | |
Emodin and other anthraquinones | Inhibition of 3-chymotrypsin-like protease (3CLPro) and adsorption | [15] | |
Essential oil: Laurus | IC50 120 µg/mL | [40] | |
Glycyrrhizin from Glycyrrhiza | Inhibition of virus adsorption and penetration | [15] | |
Quercetin and other polyphenols | Inhibition of 3CLPro and penetration | [15] | |
Saikosaponins | Inhibit viral attachment and adsorption | [39] | |
Tannic acid and 3-isotheaflavin-3-gallate | Inhibition of 3CLPro; IC50 3–7 µM | [36] | |
Cassia tora, Cibotium barometz, Gentiana scabra, Dioscorea batatas, and Taxillus chinensis | IC50 5–10 µg/mL | [37] | |
Cimicifuga racemosa, Coptis chinensis, Melia azedarach, Phellodendron amurense | IC50 2–19 µg/mL | [25] | |
Isatis tinctoria | Inhibition of 3CLPro | [15] | |
Toona sinensis (Meliaceae) | IC50 37–70 µg/mL | [41] | |
Torreya nucifera; amentoflavone | Inhibition of 3CLPro; IC50 8.3 µM | [38] | |
Water extract of Houttuynia cordata | Inhibition of 3CLPro and RNA polymerase | [15] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wink, M. Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19. Diversity 2020, 12, 175. https://doi.org/10.3390/d12050175
Wink M. Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19. Diversity. 2020; 12(5):175. https://doi.org/10.3390/d12050175
Chicago/Turabian StyleWink, Michael. 2020. "Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19" Diversity 12, no. 5: 175. https://doi.org/10.3390/d12050175
APA StyleWink, M. (2020). Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19. Diversity, 12(5), 175. https://doi.org/10.3390/d12050175