Hypogean Communities as Cybernetic Systems: Implications for the Evolution of Cave Biotas
Abstract
:1. Introduction to the Concept of Cybernetics in Ecology
2. Cybernetics in Biospeleology
2.1. Metaphysical Barriers
2.2. Feedbacks
2.3. Stability and Succession
2.4. Organization
2.5. Diversity and Energy Flows
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiener, N. Cybernetics or Control and Communication in the Animal and Machine; Wiley: New York, NY, USA, 1948. [Google Scholar]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, C. Plato’s Concept of Liberty in the Laws. Hist. Political Thought 2018, 39, 379–398. [Google Scholar]
- Heylighen, F.; Joslyn, C. Cybernetics and Second-Order Cybernetics. In Encyclopedia of Physical Science & Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2001; pp. 1–24. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, R. Between Plato and Wiener. Philosophical cybernetics in the 17th century. Stud. Logic Gramm. Rhetor. 2012, 28, 63–71. [Google Scholar]
- Margalef, R. Perspectives in Ecological Theory; The University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Patten, B.C. An Introduction to the Cybernetics of the Ecosystem: The Trophic-Dynamic Aspect. Ecology 1959, 40, 221–231. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Coughenour, M.B. The Cybernetic Nature of Ecosystems. Am. Nat. 1981, 117, 985–990. [Google Scholar] [CrossRef]
- Oksanen, L. Ecosystem Organization: Mutualism and Cybernetics or Plain Darwinian Struggle for Existence? Am. Nat. 1988, 131, 424–444. [Google Scholar] [CrossRef]
- Bergandi, D. Eco-cybernetics: The ecology and cybernetics of missing emergences. Kybernetes 2000, 29, 928–942. [Google Scholar] [CrossRef]
- Makarieva, A.M. Cybernetics. In Systems Ecology; Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK, 2008; Volume 1, pp. 806–812. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F.; Nielsen, R.; Bollback, J.P. Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. Science 2001, 294, 2310–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, A. Cave Biology: Life in Darkness; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Culver, D.C. Analysis of Simple Cave Communities I. Caves as Islands. Evolution 1970, 24, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.J.; Boulton, A.J.; Humphreys, W.F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeol. J. 2005, 13, 98–111. [Google Scholar] [CrossRef]
- Gers, C. Diversity of energy fluxes and interactions between arthropod communities: From soil to cave. Acta Oecologica 1998, 19, 205–213. [Google Scholar] [CrossRef]
- Crouau, Y.; Ferre, C.; Crouau-Roy, B. Dynamic and temporal structure of the troglobitic beetle Speonomus hydrophilus (Coleoptera: Bathyscimae). Ecography 1992, 15, 12–18. [Google Scholar] [CrossRef]
- Wittmann, K. Retromysis Nura New Genus and Species (Mysidacea, Mysidae, Heteromysini) from a Superficial Marine Cave in Minorca (Balearic Islands, Mediterranean Sea). Crustaceana 2004, 77, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.W. A Comparison of Temperate and Tropical Cave Communities. Southwest. Nat. 1969, 14, 73. [Google Scholar] [CrossRef]
- Deharveng, L. Diversity Patterns in the Tropics. In Encyclopedia of Caves; Culver, D.C., White, W.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 166–170. [Google Scholar] [CrossRef]
- Deharveng, L.; Bedos, A. The cave fauna of southeast Asia. Origin, evolution and ecology. In Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphries, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 603–632. [Google Scholar]
- Martínez, A.; Mammola, S. Specialized Terminology Limits the Reach of New Scientific Knowledge. bioRxiv 2020. [Google Scholar] [CrossRef]
- Trudgill, S.; Tansley, A.G. The use and abuse of vegetational concepts and terms. Prog. Phys. Geogr. Earth Environ. 2007, 31, 517–522. [Google Scholar] [CrossRef]
- Poulson, T.L.; White, W.B. The Cave Environment. Science 1969, 165, 971–981. [Google Scholar] [CrossRef]
- Airoldi, L.; Cinelli, F. Variability of fluxes of particulate material in a submarine cave with chemolithoautotrophic inputs or organic carbon. Mar. Ecol. Prog. Ser. 1996, 139, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Sarbu, S.M. Movile Cave: A chemoautothrophically based groundwater ecosystem. In Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphries, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 319–343. [Google Scholar]
- Sarbu, S.M.; Galdenzi, S.; Menichetti, M.; Gentile, G. Geology and biology of the Frasassi caves in central Italy: An ecological multi-disciplinary study of a hypogenic hypogean karst system. In Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphries, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 359–378. [Google Scholar]
- Hose, L.D.; Palmer, A.N.; Palmer, M.V.; Northup, D.E.; Boston, P.J.; DuChene, H.R. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 2000, 69, 399–423. [Google Scholar] [CrossRef]
- Dattagupta, S.; Schaperdoth, I.; Montanari, A.; Mariani, S.; Kita, N.; Valley, J.W.; Macalady, J.L. A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J. 2009, 3, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Mulec, J. Phototrophs in Caves. In Cave Ecology. Ecological Studies (Analysis and Synthesis); Moldovan, O., Kováč, L., Halse, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 23. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.F.; Ferreira, R.L.; Martins, R.P.; Martins, R.P. Aspects of the population ecology of Goniosoma sp. (Arachnida Opiliones Gonyleptidae). Trop. Zool. 2003, 16, 13–31. [Google Scholar] [CrossRef]
- Soares, D.; Adams, R.; Hammond, S.; Slay, M.E.; Fenolio, D.B.; Niemiller, M.L. Evolution of coprophagy and nutrient absorption in a Cave Salamander. Subterr. Biol. 2017, 24, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://sciencenetlinks.com/science-news/science-updates/snakes-cave/ (accessed on 28 October 2020).
- Esberard, C.E.L.; Vrcibradic, D. Snakes preying on bats: New records from Brazil and a review of recorded cases in the Neotropical Region. Rev. Bras. Zool. 2007, 24, 848–853. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Martin-Solano, S.; Addison, A.; Pozo-Rivera, W.E. Predation of Desmodus rotundus Geoffroy, 1810 (Phyllostomidae, Chiroptera) by Epicrates cenchria (Linnaeus, 1758) (Boidae, Reptilia) in an Ecuadorian Cave. Subterr. Biol. 2016, 19, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Price, J.J.; Johnson, K.P.; Clayton, D.H. The evolution of echolocation in swiftlets. J. Avian Biol. 2004, 35, 135–143. [Google Scholar] [CrossRef]
- Holland, R.A.; Wikelski, M.; Kümmeth, F.; Bosque, C. The Secret Life of Oilbirds: New Insights into the Movement Ecology of a Unique Avian Frugivore. PLoS ONE 2009, 4, e8264. [Google Scholar] [CrossRef]
- Martin, G.R.; Rojas, L.M.; McNeil, R. The eyes of oilbirds (Steatornis caripensis ): Pushing at the limits of sensitivity. Naturwissenschaften 2004, 91, 26–29. [Google Scholar] [CrossRef]
- Blin, M.; Fumey, J.; Lejeune, C.; Policarpo, M.; Leclercq, J.; Père, S.; Torres-Paz, J.; Pierre, C.; Imarazene, B.; Rétaux, S. Diversity of Olfactory Responses and Skills in Astyanax Mexicanus Cavefish Populations Inhabiting different Caves. Diversity 2020, 12, 395. [Google Scholar] [CrossRef]
- Romero, A.; Creswell, J.; Romero, A.; Creswell, J. In search of the elusive ‘eyeless’ cave fish of Trinidad, W.I. Natl. Speleol. Soc. News 2000, 58, 282–283. [Google Scholar]
- Romero, A.; Singh, A.; McKie, A.; Manna, M.; Baker, R.; Paulson, K.M. Return to the Cumaca Cave, Trinidad, W.I. Natl. Speleol. Soc. News 2001, 59, 220–221. [Google Scholar]
- Romero, A.; Singh, A.; McKie, A.; Manna, M.; Baker, R.; Paulson, K.M.; Creswell, J.E. Replacement of the Troglomorphic Population of Rhamdia quelen (Pisces: Pimelodidae) by an Epigean Population of the Same Species in the Cumaca Cave, Trinidad, West Indies. Copeia 2002, 2002, 938–942. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.L.; Martins, R.P. Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves. Trop. Zool. 1999, 12, 231–252. [Google Scholar] [CrossRef]
- Lopes Ferreira, R.; Parentoni Martins, R.; Yanega, D. Ecology of bat guano arthropod communities in a Brazilian dry cave. Ecotropica 2000, 6, 105–116. [Google Scholar]
- Romero, A. Introgressive hybridization in a population of Astyanax fasciatus (Pisces: Characidae) at La Cueva Chica. Natl. Speleol. Soc. Bull. 1983, 45, 81–85. [Google Scholar]
- Fenolio, D.B.; Graening, G.; Collier, B.A.; Stout, J.F. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc. R. Soc. B 2005, 273, 439–443. [Google Scholar]
- Baudinette, R.V.; Wells, R.T.; Sanderson, K.J.; Clark, B. Microclimate conditions mztermite caves of the bent-wing bat, Micropterus schreibewrsii—An attempted restoration of a former maternity site. Wildl. Res. 1994, 12, 607–619. [Google Scholar] [CrossRef]
- Graening, G.O. Trophic Structure of Ozark cave streams containing endangered species. Oceanol. Hydrobiol. Stud. 2005, 34, 3–17. [Google Scholar]
- Jasinska, E.J.; Knott, B.; McComb, A.J. Root Mats in Ground Water: A Fauna-Rich Cave Habitat. J. N. Am. Benthol. Soc. 1996, 15, 508–519. [Google Scholar] [CrossRef]
- MacArthur, R. Fluctuations of Animal Populations and a Measure of Community Stability. Ecology 1955, 36, 533. [Google Scholar] [CrossRef]
- Leigh, E.G. On the relation between the productivity, biomass, diversity, and stability of a community *. Proc. Natl. Acad. Sci. USA 1965, 53, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langecker, T.G. The effects of continuous darkness on cave ecology and cavernicolous evolution. In Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphries, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 135–157. [Google Scholar]
- Boutin, C.; Coineau, N. Evolutionary rates and phylogenetic age in some stygobiontic species. In Subterranean Ecosystems; Wilkens, H., Culver, D.C., Humphries, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 433–451. [Google Scholar]
- Romero, A. Threatened fishes of the world: Amblyopsis rosae (Eigenmann, 1898) (Amblyopsidae). Environ. Biol. Fishes 1998, 52, 434. [Google Scholar] [CrossRef]
- Romero, A. Threatened fishes of the world: Speoplatyrhinus poulsoni Cooper and Kuehne, 1974 (Amblyopsidae). Environ. Biol. Fishes 1998, 53, 293–294. [Google Scholar] [CrossRef]
- Gibert, J.P.; Yeakel, J.D. Eco-Evolutionary Origins of Diverse Abundance, Biomass, and Trophic Structures in Food Webs. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Milanovich, J.; Trauth, S.E.; Saugey, D.A.; Jordan, R.R. Fecundity, reproductive ecology, and influence of precipitation on clutch size in the western slimy salamander (plethodon albagula). Herpetologica 2006, 62, 292–301. [Google Scholar] [CrossRef]
- Ashmole, N.P.; Oromí, P.; Ashmole, M.J.; Martín, J.L. Primary faunal succession in volcanic terrain: Lava and cave studies on the Canary Islands. Biol. J. Linn. Soc. 1992, 46, 207–234. [Google Scholar] [CrossRef]
- Denitto, F.; Terlizzi, A.; Belmonte, G. Settlement and primary succession in a shallow submarine cave: Spatial and temporal benthic assemblage distinctness. Mar. Ecol. 2007, 28, 35–46. [Google Scholar] [CrossRef]
- Mammola, S.; Isaia, M. Spiders in caves. Proc. R. Soc. B 2017, 284, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Teeling, E.C.; Springer, M.S.; Madsen, O.; Bates, P.; Obrien, S.P.; Murphy, W.J. A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science 2005, 307, 580–584. [Google Scholar] [CrossRef]
- Ravn, N.R.; Michelsen, A.; Reboleira, A.S.P.S. Decomposition of Organic Matter in Caves. Front. Ecol. Evol. 2020, 8, 554651. [Google Scholar] [CrossRef]
- Bussotti, S.; Terlizzi, A.; Fraschetti, S.; Belmonte, G.; Boero, F. Spatial and temporal variability of sessile benthos in shallow Mediterranean marine caves. Mar. Ecol. Prog. Ser. 2006, 325, 109–119. [Google Scholar] [CrossRef]
- Peck, S.B.; Kukalova-Peck, J.; Bordón, C. Beetles (Coleoptera) of an Oil-Bird Cave: Cueva Del Guácharo, Venezuela. Coleopt. Bull. 1989, 43, 151–156. [Google Scholar]
- Hutchins, B.T.; Engel, A.S.; Nowlin, W.H.; Schwartz, B.F. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities. Ecology 2016, 97, 1530–1542. [Google Scholar] [CrossRef] [PubMed]
- Coma, R.; Carola, M.; Riera, T.; Zabala, M. Horizontal transfer of matter by a cave-dwelling mysid. Mar. Ecol. Pubbl. Della Stn. Zool. Napoli 1997, 18, 211–226. [Google Scholar]
- Moraza, M.L.; Lindquist, E.E. Coprozerconidae, a new family of Zerconoid mites from North America (Acari: Megostigmata: Zerconoidea). Acarologia 1998, 39, 291–313. [Google Scholar]
- Blaszak, C.; Cokendolpher, J.C.; Polyak, V.J. Paleozercon cavernicolus, n.gen., n.sp., fossil mite from a cave in the Southwestern U.S.A. (Acari, Gamasida: Zerconidae), with a key to Nearctic genera of Zerconidae. Int. J. Acarol. 1995, 21, 253–259. [Google Scholar] [CrossRef]
- Grant, E.H.C.; Lowe, W.H.; Fagan, W.F. Living in the branches: Population dynamics and ecological processes in dendritic networks. Ecol. Lett. 2007, 10, 165–175. [Google Scholar] [CrossRef]
- Ashby, W.R. Requisite Variety and Its Implications for the Control of Complex Systems. Facets Syst. Sci. 1991, 1, 405–417. [Google Scholar] [CrossRef]
- Whiteman, H.H. Evolution of Facultative Paedomorphosis in Salamanders. Q. Rev. Biol. 1994, 69, 205–221. [Google Scholar] [CrossRef]
- Endler, J.A. Natural Selection in the Wild; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Hawes, R.S. The Flood Factor in the Ecology of Caves. J. Anim. Ecol. 1939, 8, 1–5. [Google Scholar] [CrossRef]
- Hofstadter, D. Gödel, Escher, Bach: An Eternal Golden Braid; Vintage Books: New York, NY, USA, 1979. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, A., Jr. Hypogean Communities as Cybernetic Systems: Implications for the Evolution of Cave Biotas. Diversity 2020, 12, 413. https://doi.org/10.3390/d12110413
Romero A Jr. Hypogean Communities as Cybernetic Systems: Implications for the Evolution of Cave Biotas. Diversity. 2020; 12(11):413. https://doi.org/10.3390/d12110413
Chicago/Turabian StyleRomero, Aldemaro, Jr. 2020. "Hypogean Communities as Cybernetic Systems: Implications for the Evolution of Cave Biotas" Diversity 12, no. 11: 413. https://doi.org/10.3390/d12110413
APA StyleRomero, A., Jr. (2020). Hypogean Communities as Cybernetic Systems: Implications for the Evolution of Cave Biotas. Diversity, 12(11), 413. https://doi.org/10.3390/d12110413