Reduced Oxygen as an Environmental Pressure in the Evolution of the Blind Mexican Cavefish
Abstract
:1. Introduction
2. Determinants of Dissolved Oxygen Concentration and Their Status in Subterranean Environments
2.1. Low Dissolved Oxygen in Subterranean Environments and the Sierra de El Abra
2.2. Atmospheric Composition and Mixing
2.3. Photosynthesis
2.4. Respiration and Organic Matter
3. Adaptation to Low Oxygen across Teleost Fish Taxa
3.1. Metabolism
3.2. Gill Morphology
3.3. Hemoglobin
4. Evidence of Adaptation to Low Oxygen in Astyanax mexicanus
4.1. Metabolism
4.2. Gill Morphology
4.3. Hemoglobin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Herman, A.; Brandvain, Y.; Ornelas-García, C.P.; Yoshizawa, M.; Carlson, B.; Maldonado, E.; Gross, J.B.; Cartwright, R.; Rohner, N.; Warren, W.C.; et al. The Role of Gene Flow in Rapid and Repeated Evolution of Cave-Related Traits in Mexican Tetra, Astyanax mexicanus. Mol. Ecol. 2018, 27, 4397–4416. [Google Scholar] [CrossRef] [PubMed]
- Protas, M.; Conrad, M.; Gross, J.B.; Tabin, C.; Borowsky, R.L. Regressive Evolution in the Mexican Cave Tetra, Astyanax mexicanus. Curr. Biol. 2007, 17, 452–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Quin, K.E.; Yoshizawa, M.; Doshi, P.; Jeffery, W.R. Quantitative Genetic Analysis of Retinal Degeneration in the Blind Cavefish Astyanax mexicanus. PLoS ONE 2013, 8, e57281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, W.R. Regressive Evolution of Pigmentation in the Cavefish Astyanax. Isr. J. Ecol. Evol. 2006, 52, 405–422. [Google Scholar] [CrossRef]
- Gross, J.B.; Borowsky, R.; Tabin, C.J. A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus. PLoS Genet. 2009, 5, e1000326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüppop, K. Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): A Comparison of Epigean and Hypogean Populations. Environ. Biol. Fishes 1986, 17, 299–308. [Google Scholar] [CrossRef]
- Riddle, M.R.; Aspiras, A.C.; Borowsky, R.; Tabin, C.J.; Rohner, N.; Gaudenz, K.; Peuß, R.; Sung, J.Y.; Martineau, B.; Peavey, M.; et al. Insulin Resistance in Cavefish as an Adaptation to a Nutrient-Limited Environment. Nat. Cell Biol. 2018, 555, 647–651. [Google Scholar] [CrossRef]
- Jeffery, W.R. Regressive Evolution in AstyanaxCavefish. Annu. Rev. Genet. 2009, 43, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Culver, D.C. Cave Life: Evolution and Ecology; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Díaz, R.J.; Breitburg, D.L. The hypoxic environment. In Fish Physiology; Richards, J.G., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 27, pp. 1–23. [Google Scholar]
- Diaz, R.J.; Rosenberg, R. Introduction to Environmental and Economic Consequences of Hypoxia. Int. J. Water Resour. Dev. 2011, 27, 71–82. [Google Scholar] [CrossRef]
- Stramma, L.; Johnson, G.C.; Sprintall, J.; Mohrholz, V. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science 2008, 320, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.R.; Howell, T.; Watson, S.B.; Abernethy, S. On Hypoxia and Fish Kills along the North Shore of Lake Erie. J. Great Lakes Res. 2014, 40, 187–191. [Google Scholar] [CrossRef]
- Small, K.; Kopf, R.K.; Watts, R.J.; Howitt, J.A. Hypoxia, Blackwater and Fish Kills: Experimental Lethal Oxygen Thresholds in Juvenile Predatory Lowland River Fishes. PLoS ONE 2014, 9, e94524. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, J.; Janssen, F.; Gilli, A.; Gomoiu, M.T.; Hall, P.O.J.; Hansson, D.; He, Y.; Holtappels, M.; Kirf, M.K.; Kononets, M.; et al. Investigating Hypoxia in Aquatic Environments: Diverse Approaches to Addressing a Complex Phenomenon. Biogeosciences 2014, 11, 1215–1259. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mahajan, A.K.; Kumar, P. Determining Limiting Factors Influencing Fish Kills at Rewalsar Lake: A Case Study with Reference to Dal Lake (Mcleodganj), Western Himalaya, India. Arab. J. Geosci. 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Hervant, F.; Malard, F. Adaptations: Low Oxygen. In Encyclopedia of Caves; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 8–15. [Google Scholar]
- Diaz, R.J.; Nestlerode, J.; Diaz, M.L. A Global Perspective on the Effects of Eutrophication and Hypoxia on Aquatic Biota and Water Quality. In Proceedings of the 7th International Symposium on Fish Physiology, Toxicology and Water Quality, Tallinn, Estonia, 12–15 May 2003; Rupp, G., White, M.D., Eds.; U.S. Environmental Protection Agency, Ecosystems Research Division: Athens, GA, USA, 2004. [Google Scholar]
- Pollock, M.; Clarke, L.; Dubé, M. The Effects of Hypoxia on Fishes: From Ecological Relevance to Physiological Effects. Environ. Rev. 2007, 15, 1–14. [Google Scholar] [CrossRef]
- Jenny, J.P.; Francus, P.; Normandeau, A.; Lapointe, F.; Perga, M.E.; Ojala, A.E.K.; Schimmelmann, A.; Zolitschka, B. Global Spread of Hypoxia in Freshwater Ecosystems During the Last Three Centuries is Caused by Rising Local Human Pressure. Glob. Chang. Biol. 2016, 22, 1481–1489. [Google Scholar] [CrossRef]
- Hüppop, K. How Do Cave Animals Cope with Food Scarcity in Caves? In Ecosystems of the World: Subterranean Ecosystem, 1st ed.; Wilkens, H., Culver, D.C., Humphreys, W.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 172–188. [Google Scholar]
- Rohner, N.; Jarosz, D.F.; Kowalko, J.E.; Yoshizawa, M.; Jeffery, W.R.; Borowsky, R.L.; Lindquist, S.; Tabin, C.J. Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish. Science 2013, 342, 1372–1375. [Google Scholar] [CrossRef] [Green Version]
- Ornelas-Garcia, P.; Pajares, S.; Sosa-Jiménez, V.M.; Rétaux, S.; Miranda-Gamboa, R.A. Microbiome Differences Between River-Dwelling and Cave-Adapted Populations of the Fish Astyanax mexicanus (De Filippi, 1853). PeerJ 2018, 6, e5906. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, J.L.; Alvarez, F.; Iliffe, T.M. New Species of Troglobitic Shrimps from Mexico, with the Description of Troglomexicanus, New Genus (Decapoda: Palaemonidae). J. Crustac. Biol. 1999, 19, 111–122. [Google Scholar] [CrossRef]
- Krishnan, J.; Persons, J.L.; Peuss, R.; Hassan, H.; Kenzior, A.; Xiong, S.; Olsen, L.; Maldonado, E.; Kowalko, J.E.; Rohner, N. Comparative Transcriptome Analysis of Wild and Lab Populations of Astyanax mexicanus Uncovers Differential Effects of Environment and Morphotype on Gene Expression. J. Exp. Zool. Part B Mol. Dev. Evol. 2020, 334, 530–539. [Google Scholar] [CrossRef]
- Dodds, W.K.; Whiles, M.R. Aquatic Chemistry and Factors Controlling Nutrient Cycling; Elsevier BV: Amsterdam, The Netherlands, 2010; pp. 289–321. [Google Scholar]
- Demars, B.O.L.; Manson, J. Temperature Dependence of Stream Aeration Coefficients and the Effect of Water Turbulence: A Critical Review. Water Res. 2013, 47, 1–15. [Google Scholar] [CrossRef]
- Espinasa, L.; Heintz, C.; Rétaux, S.; Yoshisawa, M.; Agnès, F.; Ornelas-Garcia, P.; Balogh-Robinson, R. Vibration Attraction Response is a Plastic Trait in Blind Mexican Tetra (Astyanax mexicanus), Variable within Subpopulations Inhabiting the Same Cave. J. Fish. Biol. 2020, 2020. [Google Scholar] [CrossRef]
- Blin, M.; Fumey, J.; Lejeune, C.; Policarpo, M.; Leclercq, J.; Père, S.; Torres-Paz, J.; Pierre, C.; Imarazene, B.; Rétaux, S. Diversity of Olfactory Responses and Skills in Astyanax mexicanus Cavefish Populations Inhabiting Different Caves. Diversity 2020, 12, 395. [Google Scholar] [CrossRef]
- Elliott, W.R. Bad Air in Caves. Am. Caving Accid. NSS News 1997, 55, 396–397. [Google Scholar]
- Elliott, W.R. The Astyanax Caves of Mexico: Cavefishes of Tamaulipas, San Luis Potosí, and Guerrero; Múzquiz, J.L.L.M., McNatt, L., Eds.; Association for Mexican Cave Studies: Austin, TX, USA, 2018. [Google Scholar]
- Wetzel, R.G. Oxygen. In Limnology; Elsevier BV: Amsterdam, The Netherlands, 2001; pp. 151–168. [Google Scholar]
- Albert, R. The Second Great Sierra de El Abra Caving Expedition. In AMCS Activities Newsletter, 41st ed.; Mixon, B., Ed.; Asso-ciation for Mexican Cave Studies: Austin, TX, USA, 2018; pp. 174–207. [Google Scholar]
- Borowsky, R. Astyanax Mexicanus, the Blind Mexican Cave Fish: A Model for Studies in Development and Morphology. Cold Spring Harb. Protoc. 2008, 2008. [Google Scholar] [CrossRef]
- Rétaux, S.; Casane, D. Evolution of Eye Development in the Darkness of Caves: Adaptation, Drift, or Both? Evo. Dev. 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Bilandžija, H.; Hollifield, B.; Jeffery, W.R.; Steck, M.; Meng, G.; Ng, M.; Koch, A.D.; Gračan, R.; Ćetković, H.; Porter, M.L.; et al. Phenotypic Plasticity as a Mechanism of Cave Colonization and Adaptation. eLife 2020, 9. [Google Scholar] [CrossRef]
- Pennak, R.W.; Cole, G.A. Textbook of Limnology. Trans. Am. Microsc. Soc. 1982, 101, 115. [Google Scholar] [CrossRef]
- Richards, J.G. Metabolic and Molecular Responses of Fish to Hypoxia. In Fish Physiology; Richards, J.G., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 27, pp. 1–23. [Google Scholar]
- Negrete, B., Jr.; Esbaugh, A.J. A Methodological Evaluation of the Determination of Critical Oxygen Threshold in an Estuarine Teleost. Biol. Open 2019, 8, bio045310. [Google Scholar] [CrossRef] [Green Version]
- Mandic, M.; Todgham, A.E.; Richards, J.G. Mechanisms and Evolution of Hypoxia Tolerance in Fish. Proc. R. Soc. B. Biol. Sci. 2008, 276, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.J.; Brauner, C.J.; Cao, Z.D.; Richards, J.G.; Peng, J.L.; Dhillon, R.; Wang, Y.X. The Effect of Acclimation to Hypoxia and Sustained Exercise on Subsequent Hypoxia Tolerance and Swimming Performance in Goldfish (Carassius Auratus). J. Exp. Biol. 2011, 214, 2080–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lema, S.C.; Chow, M.I.; Resner, E.J.; Westman, A.A.; May, D.; Dittman, A.H.; Hardy, K.M. Endocrine and Metabolic Impacts of Warming Aquatic Habitats: Differential Responses between Recently Isolated Populations of a Eurythermal Desert Pupfish. Conserv. Physiol. 2016, 4. [Google Scholar] [CrossRef]
- Heuton, M.; Ayala, L.; Morante, A.; Dayton, K.; Jones, A.C.; Hunt, J.R.; McKenna, A.; Van Breukelen, F.; Hillyard, S. Oxygen Consumption of Desert Pupfish at Ecologically Relevant Temperatures Suggests a Significant Role for Anaerobic Metabolism. J. Comp. Physiol. B 2018, 188, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Heuton, M.; Ayala, L.; Van Breukelen, F.; Burg, C.; Dayton, K.; McKenna, K.; Morante, A.; Puentedura, G.; Urbina, N.; Hillyard, S.; et al. Paradoxical Anaerobism in Desert Pupfish. J. Exp. Biol. 2015, 218, 3739–3745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollid, J.; De Angelis, P.; Gundersen, K.; Nilsson, G.E. Hypoxia Induces Adaptive and Reversible Gross Morphological Changes in Crucian Carp Gills. J. Exp. Biol. 2003, 206, 3667–3673. [Google Scholar] [CrossRef] [Green Version]
- Opazo, J.C.; Butts, G.T.; Nery, M.F.; Storz, J.F.; Hoffman, F. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins. Mol. Biol. Evol. 2012, 30, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Sidell, B.D. When Bad Things Happen to Good Fish: The Loss of Hemoglobin and Myoglobin Expression in Antarctic Icefishes. J. Exp. Biol. 2006, 209, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Hardison, R.C. Globin Genes on the Move. J. Biol. 2008, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Baalsrud, H.T.; Voje, K.L.; Tørresen, O.K.; Solbakken, M.H.; Matschiner, M.; Malmstrøm, M.; Hanel, R.; Salzburger, W.; Jakobsen, K.S.; Jentoft, S. Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rutjes, H.A.; Nieveen, M.C.; Weber, R.E.; Witte, F.; van den Thillart, G.E.E.J.M. Multiple Strategies of Lake Victoria Cichlids to Cope with Lifelong Hypoxia Include Hemoglobin Switching. Am. J. Physiol. Integr. Comp. Physiol. 2007, 293, R1376–R1383. [Google Scholar] [CrossRef]
- van den Thillart, G.; Wilms, I.; Nieveen, M.; Weber, R.E.; Witte, F. Hypoxia-Induced Changes in Hemoglobins of Lake Victoria Cichlids. J. Exp. Biol. 2018, 221, jeb177832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salin, K.; Voituron, Y.; Mourin, J.; Hervant, F. Cave Colonization without Fasting Capacities: An Example with the Fish Astyanax fasciatus mexicanus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.; Softley, R.; Warrant, E.J. Eyeless Mexican Cavefish Save Energy by Eliminating the Circadian Rhythm in Metabolism. PLoS ONE 2014, 9, e107877. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.; Softley, R.; Warrant, E.J. The Energetic Cost of Vision and the Evolution of Eyeless Mexican Cavefish. Sci. Adv. 2015, 1, e1500363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sears, C.R.; Boggs, T.E.; Gross, J.B. Dark-Rearing Uncovers Novel Gene Expression Patterns in an Obligate Cave-Dwelling Fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2020, 334, 518–529. [Google Scholar] [CrossRef]
- Van der Weele, C.M.; Jeffery, W.R. Cavefish Increase Red Blood Cell Development and Reprogram Metabolism as Adaptations to Environmental Hypoxia. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.B.; Meyer, B.; Perkins, M. The Rise of Astyanax Cavefish. Dev. Dyn. 2015, 244, 1031–1038. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boggs, T.; Gross, J. Reduced Oxygen as an Environmental Pressure in the Evolution of the Blind Mexican Cavefish. Diversity 2021, 13, 26. https://doi.org/10.3390/d13010026
Boggs T, Gross J. Reduced Oxygen as an Environmental Pressure in the Evolution of the Blind Mexican Cavefish. Diversity. 2021; 13(1):26. https://doi.org/10.3390/d13010026
Chicago/Turabian StyleBoggs, Tyler, and Joshua Gross. 2021. "Reduced Oxygen as an Environmental Pressure in the Evolution of the Blind Mexican Cavefish" Diversity 13, no. 1: 26. https://doi.org/10.3390/d13010026
APA StyleBoggs, T., & Gross, J. (2021). Reduced Oxygen as an Environmental Pressure in the Evolution of the Blind Mexican Cavefish. Diversity, 13(1), 26. https://doi.org/10.3390/d13010026