Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources
Abstract
:1. Introduction
2. Organization of the Conservation of Domestic Animal Genetic Resources
- Management of official recognition of breeds and breeder associations responsible for herd books and breeding programs.
- Development, management, and updating of the national inventory and databases on breeds and breeder associations.
- Establishment and maintenance of the national alert system.
- Management of the national germplasm bank and coordination of the territorial banks.
- Establishment of the national network of ex situ in vivo conservation centers.
- When an alert is detected in the territories, the local official responsible collects information and immediately contacts the national coordinator.
- The national coordinator calls an extraordinary meeting of the committee.
- A general analysis of the alert is developed at this extraordinary meeting, and a plan of action is proposed.
- The plan of action is implemented.
- Progress of the actions is followed in successive general meetings of the committee.
3. International Management of the Conservation of Domestic Animal Genetic Resources
3.1. Governmental Context
3.2. Non-Governmental Context
3.3. Conservation Programs
3.4. Organization of in Situ Conservation
- An in situ conservation program that maximizes genetic diversity, with accurate selection of breeding animals to provide the maximum variability possible to the population.
- The creation of livestock structures (breeder associations, phenotype recording systems, animal health, germplasm bank, others).
- Compensation for loss of income from breeding local breeds with lower productive potential.
- Financial resources for actions that are otherwise impossible due to the economic situation of small stakeholders.
- Measures to value the specific products derived from these breeds, with official definition of these products and the creation of short specific market chains and protected trademarks.
- Searches for other alternative uses.
3.5. Organization of Ex Situ Conservation
3.5.1. Ex Situ In Vivo Organization
- Individuals or groups of individuals belonging to a particular population are identified to be at imminent risk.
- People, technicians, or institutions raise the alarm to the territorial authorities; they issue this to the national entity, which calls an extraordinary meeting of the national committee.
- The situation is evaluated, and the rescue action is determined.
- Ark, rescue, or quarantine centers (depending on the profile of the alert) are identified.
- An agreement is signed among the responsible parties.
3.5.2. Ex Situ In Vitro Organization
- The political organization of the country (territorial, national, and international regulations).
- Identification of partners (associations of breeders, private companies, Research and Development centers).
- Management and coordination (advisory committees, direction committees, scientific committees, and promoters).
- Financing (governments, NGOs, breeder associations and federations, private stakeholders).
4. Management of the International Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Phillips, R.W. Breeding Livestock Adapted To Unfavorable Environments, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1948; p. 182. [Google Scholar]
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef] [PubMed]
- Maijala, K. Conservation of animal breeds in general. World Congr. Genet. Appl. Livest. Prod. 1974, 2, 37–46. [Google Scholar]
- Orozco, R. On the possibility of organizing a national program for the preservation of chicken breeds and strains. In Proceedings of the 2nd European Poultry Conference, WPSA, Bologna, Italy, 11–12 December 1962; pp. 385–398. [Google Scholar]
- Menzi, M. Gene conservation. Worlds Poult. Sci. J. 1966, 22, 151–154. [Google Scholar] [CrossRef]
- Barker, J.; Bradley, D.; Fries, R.; Hill, W.; Nei, M.; Wayne, R. An Integrated Global Programme To Establish The Genetic Relationships Among The Breeds Of Each Domestic Animal Species, 1st ed.; Animal Production and Health Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 1993; p. 24. [Google Scholar]
- Rare Breeds Survival Trust (RBST). Rare Breed Survival Trust our History. Available online: https://www.rbst.org.uk/our-history (accessed on 29 August 2019).
- Food and Agriculture Organization of the United Nations (FAO). Global plan of action for animal genetic resources and the Interlaken declaration. In Proceedings of the International Technical Conference on Animal Genetic Resources for Food and Agriculture, Interlaken, Switzerland, 3–7 September 2007. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Animal Genetic Resources for Food and Agriculture, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2007; p. 511. [Google Scholar]
- Convention on Biological Biodiversity. Available online: https://www.cbd.int/ (accessed on 29 August 2019).
- Convention on Biological Biodiversity. The Nagoya Protocol on Access and Benefit-sharing. Available online: https://www.cbd.int/abs/ (accessed on 29 August 2019).
- Martyniuk, E.; Berger, B.; Bojkovski, D.; Bouchel, D.; Hiemstra, S.; Marguerat, C.; Matlova, V.; Sæther, N. Possible consequences of the Nagoya Protocol for animal breeding and the worldwide exchange of animal genetic resources. Acta Agric. Scand. A Anim. Sci. 2017, 67, 96–106. [Google Scholar] [CrossRef]
- RBI: Rare Breeds International. Available online: https://www.rarebreedsinternational.org/ (accessed on 29 August 2019).
- Alderson, G. Conservation of breeds and maintenance of biodiversity: justification and methodology for the conservation of Animal Genetic Resources. Arch. Zootec. 2018, 67, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Mulvany, P. Agricultural biodiversity is sustained in the framework of food sovereignty. Biodiversity 2017, 18, 84–91. [Google Scholar] [CrossRef]
- Gordillo, G.; Méndez, M. Food Security and Sovereignty; Food and Agriculture Organization of the United Nations (FAO): Rome Italy, 2013; p. 33. [Google Scholar]
- Xuan, K.D.; Phuong, T.L.; Tien, P.; Thu, P.; Khiem, N.; Nhung, D.; Muoi, N.; Oanh, N.; Thanh, P.; Szalay, I. In situ and ex situ assessment of a native Hungarian chicken breed for its potential conservation and adaptation in the subtropics. Anim. Prod. Sci. 2017, 57, 975–980. [Google Scholar] [CrossRef]
- Gutiérrez, R.S.; Luna, R.G.; Nájera, M.d.J.F. Caracterización morfológica de un rebaño de conservación de cabras criollas en Zacatecas, México. Arch. Zootec. 2018, 67, 73–79. [Google Scholar] [CrossRef]
- Leroy, G.; Besbes, B.; Boettcher, P.; Hoffmann, I.; Capitan, A.; Baumung, R. Rare phenotypes in domestic animals: unique resources for multiple applications. Anim. Genet. 2016, 47, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Scherf, B.D. World Watch List For Domestic Animal Diversity, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2000. [Google Scholar]
- DAD-IS Domestic Animal Diversity Information System, v. 2. Available online: http://www.fao.org/dad-is/es/ (accessed on 29 August 2019).
- Alderson, L. Breeds at Risk: Criteria and Classification. In Proceedings of the Joint ERFP/RBI/RBST Workshop Summary Report, London, UK, 16–17 February 2010; pp. 16–17. [Google Scholar]
- Alderson, L. Breeds at risk: Definition and measurement of the factors which determine endangerment. Livest. Sci. 2009, 123, 23–27. [Google Scholar] [CrossRef]
- Regan, H.M.; Davis, F.W.; Andelman, S.J.; Widyanata, A.; Freese, M. Comprehensive criteria for biodiversity evaluation in conservation planning. Biodiver. Conserv. 2007, 16, 2715–2728. [Google Scholar] [CrossRef]
- Wainwright, W.; Ahmadi, B.V.; Mcvittie, A.; Simm, G.; Moran, D. Prioritising support for cost effective rare breed conservation using multi-criteria decision analysis. Front. Ecol. Environ. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Duruz, S.; Flury, C.; Matasci, G.; Joerin, F.; Widmer, I.; Joost, S. A WebGIS platform for the monitoring of Farm Animal Genetic Resources (GENMON). PLoS ONE 2017, 12, e0176362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, M.; Petrescu-Mag, I.V.; Gavriloaie, C. Rustic gene reserves for the future of breed improvement technologies: old swine (Sus scrofa domesticus) strains and their perspectives. Porc. Res. 2016, 6, 37–56. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Crioconservation of Animal Genetic Resources, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2012; p. 203. [Google Scholar]
- EURONATUR. ELBARN: European Livestock Breeds Ark and Rescue Net; EURONATUR: Radolfzell, Germany, 2010; p. 67. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers, Initiative for Domestic Animal Diversity, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1997; p. 58. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Determining the conservation value of a breed. In In Vivo Conservation of Animal Genetic Resources, 1st ed.; Food and Agriculture Organization of the United Nations (FAO), Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; pp. 58–86. [Google Scholar]
- Ramsay, K.; Hunlun, C.; Kotze, A. The role of breed societies and breed conservation non-governmental organizations in community-based management of farm animal genetic resources. In Community-Based Management Of Animal Genetic Resources, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 131. [Google Scholar]
- The Livestock Conservancy. Available online: https://livestockconservancy.org/index.php/resources/internal/about-us (accessed on 10 August 2019).
- The Farm Animals Conservation Trust. Available online: http://www.ais.up.ac.za/vet/fact/factconf.htm (accessed on 14 August 2019).
- The Rare Breed Conservation Society of New Zealand. Available online: https://www.rarebreeds.co.nz/about.html (accessed on 10 August 2019).
- Heritage Livestock Canada. Available online: https://www.rarebreedscanada.com/ (accessed on 10 August 2019).
- Rare Breed Trust in Australia. Available online: http://rarebreedstrust.com.au/ (accessed on 10 August 2019).
- Fernández, M.; Gómez, M.; Jiménez, M.; Adan, S.; Delgado, J. The Spanish Domestic Animals Genetic conservation from a non governmental organization (SERGA). Ital. J. Anim. Sci. 2007, 6, 125–126. [Google Scholar] [CrossRef]
- Sociedade Portuguesa de Recursos Genéticos Animais. Available online: http://www.sprega.com.pt/index.php?lang=es (accessed on 10 August 2019).
- Safeguard for Agricultural Varieties in Europe (SAVE Foundation). Available online: http://www.save-foundation.net/en/ (accessed on 10 August 2019).
- Conservación de la Biodiversidad de los Animales Domésticos Locales para el Desarrollo Rural Sostenible (Red CONBIAND). Available online: http://www.uco.es/conbiand/Bienvenida.html (accessed on 10 August 2019).
- Maza, M.; Fortea, C.; Sepúlveda, W.; Saied, M. Farmers’ perceptions towards production of Ojinegra lamb meat, an autochthonous sheep breed. Arch. Zootec. 2018, 67. [Google Scholar]
- Molina-Flores, B.; Velasco, G.; Camacho, M.; Martínez, M.; Delgado, J. Caracterización socio-económica de la cría de bovinos en la agricultura familiar del Alto Egipto. Arch. Zootec. 2019, 68, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Pascual, U.; Perrings, C. Developing incentives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 256–268. [Google Scholar] [CrossRef]
- Pattison, J.; Drucker, A.; Anderson, S. The cost of conserving livestock diversity? Incentive measures and conservation options for maintaining indigenous Pelón pigs in Yucatan, Mexico. Trop. Anim. Health Prod. 2007, 39, 339–353. [Google Scholar] [CrossRef]
- Drucker, A.G.; Gomez, V.; Anderson, S. The economic valuation of farm animal genetic resources: a survey of available methods. Ecol. Econ. 2001, 36, 1–18. [Google Scholar] [CrossRef]
- Drucker, A.G. Where’s the beef? The economics of AnGR conservation and its influence on policy design and implementation. Anim. Genet. Resour. 2010, 47, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Ligda, C.; Zjalic, M. Conservation of animal genetic resources in Europe: overview of the policies, activities, funding and expected benefits of conservation activities. Anim. Genet. Resour. 2011, 49, 75–86. [Google Scholar] [CrossRef]
- Belew, A.K.; Tesfaye, K.; Belay, G. The State of Conservation of Animal Genetic Resources in Developing Countries: A Review. Int. J. Pharm. Biol. Sci. 2016, 5, 58–66. [Google Scholar]
- Mara, L.; Casu, S.; Carta, A.; Dattena, M. Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Anim. Reprod. Sci. 2013, 138, 25–38. [Google Scholar] [CrossRef]
- Tervit, H.; Whittingham, D.; Rowson, L. Successful culture in vitro of sheep and cattle ova. Reproduction 1972, 30, 493–497. [Google Scholar] [CrossRef]
- Whittingham, D.; Leibo, S.; Mazur, P. Survival of mouse embryos frozen to-196 and-269 C. Science 1972, 178, 411–414. [Google Scholar] [CrossRef]
- Morrell, J.; Mayer, I. Reproduction biotechnologies in germplasm banking of livestock species: A review. Zygote 2017, 25, 545–557. [Google Scholar]
- Powell, R.L.; Norman, H.D. Animal germplasm information systems. In Biotic Diversity and Germplasm Preservation, Global Imperatives; Springer: Dordrecht, The Netherlands, 1989; pp. 427–443. [Google Scholar]
- Weitzman, M.L. The Noah’s ark problem. Econometrica 1998, 1279–1298. [Google Scholar] [CrossRef]
- Weitzman, M.L. On diversity. Q. J. Econ. 1992, 107, 363–405. [Google Scholar] [CrossRef]
- Ruane, J. A framework for prioritizing domestic animal breeds for conservation purposes at the national level: A Norwegian case study. Conserv. Biol. 2000, 14, 1385–1393. [Google Scholar] [CrossRef]
- Rodero, E.; Camacho, M.; Delgado, J.; Rodero, A. Study of the Andalusian minor breeds: evaluation of the priorities of conservation. Anim. Genet. Resour./Resources Génétiques Animales/Recursos Genéticos Animales 1992, 10, 35–42. [Google Scholar]
- Gandini, G.C.; Villa, E. Analysis of the cultural value of local livestock breeds: a methodology. J. Anim. Breed. Genet. 2003, 120, 1–11. [Google Scholar]
- De Oliveira Silva, R.; Ahmadi, B.V.; Hiemstra, S.J.; Moran, D. Optimizing ex situ genetic resource collections for European livestock conservation. J. Anim. Breed. Genet. 2019, 136, 63–73. [Google Scholar] [PubMed] [Green Version]
- Ollivier, L.; Labroue, F.; Glodek, P.; Gandini, G.C.; Delgado, J.V. Pig Genetic Resources in Europe; Wageningen Academic Publishers: Wageningen, The Netherlands, 2002; p. 130. [Google Scholar]
- Foulley, J.; Van Schriek, M.; Alderson, L.; Amigues, Y.; Bagga, M.; Boscher, M.; Brugmans, B.; Cardellino, R.; Davoli, R.; Delgado, J. Genetic diversity analysis using lowly polymorphic dominant markers: the example of AFLP in pigs. J. Hered. 2006, 97, 244–252. [Google Scholar] [PubMed] [Green Version]
- San Cristobal, M.; Chevalet, C.; Haley, C.; Joosten, R.; Rattink, A.; Harlizius, B.; Groenen, M.; Amigues, Y.; Boscher, M.Y.; Russell, G. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 2006, 37, 189–198. [Google Scholar] [CrossRef] [PubMed]
- San Cristobal, M.; Chevalet, C.; Peleman, J.; Heuven, H.; Brugmans, B.; Van Schriek, M.; Joosten, R.; Rattink, A.; Harlizius, B.; Groenen, M. Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers. Anim. Genet. 2006, 37, 232–238. [Google Scholar] [CrossRef]
- Ollivier, L.; Alderson, L.; Gandini, G.C.; Foulley, J.-L.; Haley, C.S.; Joosten, R.; Rattink, A.P.; Harlizius, B.; Groenen, M.A.; Amigues, Y. An assessment of European pig diversity using molecular markers: Partitioning of diversity among breeds. Conserv. Genet. 2005, 6, 729–741. [Google Scholar]
- Haley, C.; Li, K.; Plastow, G.; Cardellino, R.; Andersson, L.; SanCristobal, M.; Li, N.; Huang, L.; Chevalet, C.; Blott, S. Characterisation of genetic variation in the pig breeds of China and Europe–The PigBioDiv2 project. Arch. Zootec. 2003, 52, 207–217. [Google Scholar]
- Megens, H.-J.; Crooijmans, R.P.; San Cristobal, M.; Hui, X.; Li, N.; Groenen, M.A. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 2008, 40, 103. [Google Scholar]
- Bozzi, R.; Skrlep, M.; Lenoir, H.; Lebret, B.; Gasco, J.G.; Petig, M.; Charneca, R.; Paixim, H.; Karolyi, D.; Radović, Č. Survey of demographic and phenotypic data of local pig breeds of TREASURE project. Arch. Zootec. 2018, S1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Felius, M.; Beerling, M.-L.; Buchanan, D.; Theunissen, B.; Koolmees, P.; Lenstra, J. On the history of cattle genetic resources. Diversity 2014, 6, 705–750. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.J.; Ginja, C.; Kantanen, J.; Pérez-Pardal, L.; Tresset, A.; Stock, F.; Gama, L.T.; Penedo, M.C.T.; Bradley, D.G.; Lenstra, J.A. Dual origins of dairy cattle farming–evidence from a comprehensive survey of European Y-chromosomal variation. PLoS ONE 2011, 6, e15922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, R.; Nijman, I.J.; Milanesi, E.; Moazami-Goudarzi, K.; Williams, J.L.; Erhardt, G.; Dunner, S.; Rodellar, C.; Valentini, A.; Bradley, D.G.; et al. Differentiation of European cattle by AFLP fingerprinting. Anim. Genet. 2007, 38, 60–66. [Google Scholar] [CrossRef] [PubMed]
- European Cattle Genetic Diversity Consortium. Marker-assisted conservation of European cattle breeds: An evaluation. Anim. Genet. 2006, 37, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Lenstra, J. Evolutionary and demographic history of sheep and goats suggested by nuclear, mtDNA and Y chromosome markers. In Proceedings of the Role Of Biotechnology For The Characterization And Conservation Of Crop, Forestry, Animal And Fishery Genetic Resources, International Workshop, Turin, Italy, 5–7 March 2005; pp. 1–4. [Google Scholar]
- Pereira, F.; Queirós, S.; Gusmão, L.; Nijman, I.J.; Cuppen, E.; Lenstra, J.A.; Consortium, E.; Davis, S.J.; Nejmeddine, F.; Amorim, A. Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa. Mol. Biol. Evol. 2009, 26, 2765–2773. [Google Scholar] [CrossRef] [Green Version]
- Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G.; Consortium, E. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007, 38, 37–44. [Google Scholar] [CrossRef]
- Cañón, J.; García, D.; García-Atance, M.; Obexer-Ruff, G.; Lenstra, J.; Ajmone-Marsan, P.; Dunner, S.; Consortium, E. Geographical partitioning of goat diversity in Europe and the Middle East. Anim. Genet. 2006, 37, 327–334. [Google Scholar] [CrossRef]
- Laloë, D.; Moazami-Goudarzi, K.; Lenstra, J.A.; Marsan, P.A.; Azor, P.; Baumung, R.; Bradley, D.G.; Bruford, M.W.; Cañón, J.; Dolf, G. Spatial trends of genetic variation of domestic ruminants in Europe. Diversity 2010, 2, 932–945. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [Green Version]
- AVIANDIV. Development of Strategy and Application of Molecular Tools to Assess Biodiversity in Chicken Genetic Resources. Available online: https://aviandiv.fli.de/ (accessed on 15 August 2019).
- Malomane, D.K.; Simianer, H.; Weigend, A.; Reimer, C.; Schmitt, A.O.; Weigend, S. The SYNBREED chicken diversity panel: a global resource to assess chicken diversity at high genomic resolution. BMC Genom. 2019, 20, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeneveld, L.F.; Gregusson, S.; Guldbrandtsen, B.; Hiemstra, S.J.; Hveem, K.; Kantanen, J.; Lohi, H.; Stroemstedt, L.; Berg, P. Domesticated animal biobanking: land of opportunity. PLoS Biol. 2016, 14, e1002523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajmone-Marsan, P.; Colli, L.; Han, J.L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P. The characterization of goat genetic diversity: Towards a genomic approach. Small Rumin. Res. 2014, 121, 58–72. [Google Scholar] [CrossRef]
- Stucki, S.; Orozco-terWengel, P.; Forester, B.R.; Duruz, S.; Colli, L.; Masembe, C.; Negrini, R.; Landguth, E.; Jones, M.R.; Consortium, N. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour. 2017, 17, 1072–1089. [Google Scholar] [CrossRef] [Green Version]
- Capra, E.; Turri, F.; Lazzari, B.; Cremonesi, P.; Gliozzi, T.; Fojadelli, I.; Stella, A.; Pizzi, F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between high-and low-motile sperm populations. BMC Genom. 2017, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J. Red Iberoamericana sobre la conservación de la biodiversidad de los animales domésticos locales para el desarrollo rural sostenible (CYTED. XII-H). Anim. Genet. Resour. 2000, 28, 63–67. [Google Scholar] [CrossRef]
- Camacho, M.E.; Vargas, J.; Delgado, J.V. 15 Years of CONBIAND Network. A Review. AICA 2014, 4, 35–37. [Google Scholar]
- Delgado, J.; Camacho, M. A Latinoamerican experience in the conservation of Domestic Animals Genetic resources and traditional management systems. Ital. J. Anim. Sci. 2007, 6, 120–121. [Google Scholar] [CrossRef]
- Ginja, C.; Penedo, M.; Melucci, L.; Quiroz, J.; Martinez Lopez, O.; Revidatti, M.; Martínez-Martínez, A.; Delgado, J.V.; Gama, L. Origins and genetic diversity of New World Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms. Anim. Genet. 2010, 41, 128–141. [Google Scholar] [CrossRef]
- Delgado, J.; Martínez, A.; Acosta, A.; Alvarez, L.; Armstrong, E.; Camacho, E.; Cañón, J.; Cortés, O.; Dunner, S.; Landi, V. Genetic characterization of Latin-American Creole cattle using microsatellite markers. Anim. Genet. 2012, 43, 2–10. [Google Scholar] [CrossRef]
- Martínez, A.M.; Gama, L.T.; Cañón, J.; Ginja, C.; Delgado, J.V.; Dunner, S.; Landi, V.; Martín-Burriel, I.; Penedo, M.C.T.; Rodellar, C. Genetic footprints of Iberian cattle in America 500 years after the arrival of Columbus. PLoS ONE 2012, 7, e49066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginja, C.; Gama, L.T.; Cortes, Ó.; Delgado, J.V.; Dunner, S.; García, D.; Landi, V.; Martín-Burriel, I.; Martínez-Martínez, A.; Penedo, M.C.T. Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers. Genet. Sel. Evol. 2013, 45, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginja, C.; Gama, L.T.; Cortés, O.; Burriel, I.M.; Vega-Pla, J.L.; Penedo, C.; Sponenberg, P.; Cañón, J.; Sanz, A.; do Egito, A.A. the genetic ancestry of American creole cattle inferred from uniparental and autosomal genetic markers. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Bruno-de-Sousa, C.; Martinez-Martinez, A.; Ginja, C.; Menezes, M.; Pimenta-Filho, E.; Delgado, J.; Gama, L. Drift across the Atlantic: genetic differentiation and population structure in Brazilian and Portuguese native goat breeds. J. Anim. Breed. Genet. 2012, 129, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Ginja, C.; Gama, L.T.; Martinez, A.; Sevane, N.; Martin-Burriel, I.; Lanari, M.R.; Revidatti, M.; Aranguren-Méndez, J.A.; Bedotti, D.O.; Ribeiro, M.N. Genetic diversity and patterns of population structure in Creole goats from the Americas. Anim. Genet. 2017, 48, 315–329. [Google Scholar] [CrossRef]
- Sevane, N.; Cortés, O.; Gama, L.; Martínez, A.; Zaragoza, P.; Amills, M.; Bedotti, D.O.; de Sousa, C.B.; Cañon, J.; Dunner, S. Dissection of ancestral genetic contributions to Creole goat populations. Animal 2018, 12, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Revidatti, M.; Delgado Bermejo, J.; Gama, L.; Periati, V.L.; Ginja, C.; Alvarez, L.; Vega-Pla, J.; Martinez, A.; Consortium, B. Genetic characterization of local Criollo pig breeds from the Americas using microsatellite markers. J. Anim. Sci. 2014, 92, 4823–4832. [Google Scholar] [CrossRef]
- Cortés, O.; Martinez, A.; Cañon, J.; Sevane, N.; Gama, L.; Ginja, C.; Landi, V.; Zaragoza, P.; Carolino, N.; Vicente, A. Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity 2016, 117, 14. [Google Scholar] [CrossRef] [Green Version]
- Cortés, O.; Dunner, S.; Gama, L.; Martínez, A.; Delgado, J.; Ginja, C.; Jiménez, L.; Jordana, J.; Luis, C.; Oom, M. The legacy of Columbus in American horse populations assessed by microsatellite markers. J. Anim. Breed. Genet. 2017, 134, 340–350. [Google Scholar] [CrossRef]
- Jordana, J.; Ferrando, A.; Miró, J.; Goyache, F.; Loarca, A.; Martínez López, O.; Canelón, J.; Stemmer, A.; Aguirre, L.; Lara, M. Genetic relationships among American donkey populations: insights into the process of colonization. J. Anim. Breed. Genet. 2016, 133, 155–164. [Google Scholar] [CrossRef]
- Jordana, J.; Goyache, F.; Ferrando, A.; Fernández, I.; Miró, J.; Loarca, A.; López, O.M.; Canelón, J.; Stemmer, A.; Aguirre, L. Contributions to diversity rather than basic measures of genetic diversity characterise the spreading of donkey throughout the American continent. Livest. Sci. 2017, 197, 1–7. [Google Scholar] [CrossRef]
- Landi, V.; Johana, N.; Ascue, V.; Gomez, M.; Adebambo, T.; Delgado, J.V.; Martinez, M.A. Genetics footprints of Canary Hair sheep in South American sheep breeds. Ital. J. Anim. Sci. 2013, 12, 54. [Google Scholar]
- Aviles, D.; Landi, V.; Delgado, J.V.; Vega-Pla, J.L.; Martinez, A. Isolation and characterisation of a dinucleotide microsatellite set for a parentage and biodiversity study in domestic guinea pig (Cavia porcellus). Ital. J. Anim. Sci. 2015, 14, 3960. [Google Scholar] [CrossRef] [Green Version]
- Pérezgrovas Garza, R.; Rodríguez Galván, G.; Zaragoza Martínez, L. El traspatio Iberoamericano: Experiencias y reflexiones en Argentina, Bolivia, Brasil, España, México y Uruguay, 1st ed.; Universidad Autónoma de Chiapas: Chiapas, Mexico, 2011; p. 296. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado Bermejo, J.V.; Martínez Martínez, M.A.; Rodríguez Galván, G.; Stemmer, A.; Navas González, F.J.; Camacho Vallejo, M.E. Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources. Diversity 2019, 11, 235. https://doi.org/10.3390/d11120235
Delgado Bermejo JV, Martínez Martínez MA, Rodríguez Galván G, Stemmer A, Navas González FJ, Camacho Vallejo ME. Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources. Diversity. 2019; 11(12):235. https://doi.org/10.3390/d11120235
Chicago/Turabian StyleDelgado Bermejo, Juan Vicente, María Amparo Martínez Martínez, Guadalupe Rodríguez Galván, Angélika Stemmer, Francisco Javier Navas González, and María Esperanza Camacho Vallejo. 2019. "Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources" Diversity 11, no. 12: 235. https://doi.org/10.3390/d11120235
APA StyleDelgado Bermejo, J. V., Martínez Martínez, M. A., Rodríguez Galván, G., Stemmer, A., Navas González, F. J., & Camacho Vallejo, M. E. (2019). Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources. Diversity, 11(12), 235. https://doi.org/10.3390/d11120235