Ecophysiology of Amphibians: Information for Best Mechanistic Models
Abstract
:1. Introduction
2. Ecophysiological Information in Mechanistic Models of Amphibians
2.1. Brief Historical Overlook
2.2. A Comment on Larvae
3. Expression of Physiological Attributes at Ecologically-Relevant Scales
3.1. Synergic Effects of Water Balance and Body Temperature on Behavioral Performance
3.2. Behavioral Site Selection and Hydrothermal Regulation
3.3. Metabolic Links to Thermal and Water Balance, and Behavior
3.4. Environmental Thermal and Hydric Tolerances
3.5. Accommodating Plasticity, Ontogenetic Variation, and Population-Level Process
4. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hillman, S.S.; Withers, P.; Drewes, R.; Hillyard, S. Ecological and Environmental Physiology of Amphibians; Oxford University Press: New York, NY, USA, 2009; ISBN 0198570317. [Google Scholar]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Hoffman, M.; Chanson, J.S.; Cox, N.A.; Berridge, R.J.; Ramani, P.; Young, B.E. Threatened Amphibians of the World; Lynx Edicions: Barcelona, Spain; IUCN: Gland, Switzerland; Conservation International: Arlington, VA, USA, 2008; ISBN 978-84-96553-41-5. [Google Scholar]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The Impact of Conservation on the Status of the World’s Vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Navas, C.A.; Otani, L. Physiology, environmental change, and anuran conservation. Science 2010, 330, 83–103. [Google Scholar] [CrossRef]
- Li, Y.; Cohen, J.M.; Rohr, J.R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 2013, 8, 145–161. [Google Scholar] [CrossRef] [PubMed]
- AmphibiaWeb. University of California, Berkeley, CA, USA. 2018. Available online: https://amphibiaweb.org (accessed on 29 September 2018).
- Hopkins, W.A. Amphibians as models for studying environmental change. ILAR J. 2007, 48, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kingsolver, J.G.; Arthur Woods, H.; Buckley, L.B.; Potter, K.A.; MacLean, H.J.; Higgins, J.K. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 2011, 51, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Petitgas, P.; Rijnsdorp, A.D.; Dickey-Collas, M.; Engelhard, G.H.; Peck, M.A.; Pinnegar, J.K.; Drinkwater, K.; Huret, M.; Nash, R.D.M. Impacts of climate change on the complex life cycles of fish. Fish. Oceanogr. 2013, 22, 121–139. [Google Scholar] [CrossRef]
- Levy, O.; Buckley, L.B.; Keitt, T.H.; Smith, C.D.; Boateng, K.O.; Kumar, D.S.; Angilletta, M.J. Resolving the life cycle alters expected impacts of climate change. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillywhite, H.B. Physiological ecology: Field methods and perspective. In Amphibian Ecology and Conservation. A Handbook of Techniques, 1st ed.; Dodd, K., Ed.; Series in Techniques in Ecology and Conservation; Oxford University Press: New York, NY, USA, 2009; pp. 363–386. ISBN 978-0-19-954119-5. [Google Scholar]
- Winter, M.; Fiedler, W.; Hochachka, W.M.; Koehncke, A.; Meiri, S.; De la Riva, I. Patterns and biases in climate change research on amphibians and reptiles: A systematic review. R. Soc. Open Sci. 2016, 3, 160158. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Christian, K.A.; Tracy, C.R. Not just small, wet, and cold: Effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 2010, 91, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.J.; Thompson, M.E.; Donnelly, M.A.; Todd, B.D. Amphibian sensitivity to habitat modification is associated with population trends and species traits. Glob. Ecol. Biogeogr. 2017, 26, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Nowakowski, A.J.; Watling, J.I.; Thompson, M.E.; Brusch, G.A., IV; Catenazzi, A.; Whitfield, S.M.; David, J.; Kurz, D.J.; Suarez-Mayorga, A.; Aponte-Gutierrez, A.; et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 2018, 21, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Riddell, E.A.; Apanovitch, E.K.; Odom, J.P.; Sears, M.K. Physical calculations of resistance to water loss improve predictions of species range models. Ecol. Monogr. 2017, 87, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Riddell, E.A.; Odom, J.P.; Damm, J.D.; Sears, M.K. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 2018, 4, eaar5471. [Google Scholar] [CrossRef] [PubMed]
- Gerick, A.A.; Munshaw, R.G.; Palen, W.J.; Combes, S.A.; O’Regan, S.M. Thermal physiology and species distribution models reveal climate vulnerability of temperate amphibians. J. Biogeogr. 2014, 41, 713–723. [Google Scholar] [CrossRef]
- Peterman, W.E.; Semlitsch, R.D. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia 2014, 176, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Frishkoff, L.O.; Hadly, E.A.; Daily, G.C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Chang. Biol. 2015, 21, 3901–3916. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.R.; Porter, W.P. NicheMapR—An R package for biophysical modelling: The microclimate model. Ecography 2017, 40, 664–674. [Google Scholar] [CrossRef]
- Maclean, I.M.; Mosedale, J.R.; Bennie, J.J. Microclima: An R package for modelling meso-and microclimate. Methods Ecol. Evol. 2018. [Google Scholar] [CrossRef]
- Chown, S.L.; Gaston, K.J. Macrophysiology for a changing world. Proc. R. Soc. B 2008, 275, 1469–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navas, C.A.; Gomes, F.R.; Di Domenico, E. Physiological ecology and conservation of anuran amphibians. In Amphibian and Reptile Adaptation to the Environment, 1st ed.; Andrade, D.V., Bevier, C.R., Carvalho, J.E., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 155–188. ISBN 978-1-48-222204-3. [Google Scholar]
- Spotila, J.R.; O’Connor, M.P.; Bakken, G.S. Biophysics of heat and mass transfer. In Environmental Physiology of the Amphibians, 1st ed.; Feder, M.E., Burggreen, W.W., Eds.; The University of Chicago Press: Chicago, IL, USA, 1992; pp. 59–80. ISBN 978-0-22-623943-9. [Google Scholar]
- Mendonça, M.T.; Licht, P.; Ryan, M.J.; Barnes, R. Changes in hormone levels in relation to breeding behavior in male bullfrogs (Rana catesbeiana) at the individual and population levels. Gen. Comp. Endocrinol. 1985, 58, 270–279. [Google Scholar] [CrossRef]
- Gomes, F.R.; Oliveira, R.V.; Assis, V.R.; Titon, B., Jr.; Moretti, E.H.; Mendonça, M.T. Interspecific variation in innate immune defenses and stress response of toads from Botucatu (São Paulo, Brazil). S. Am. J. Herpetol. 2012, 7, 1–8. [Google Scholar] [CrossRef]
- Navas, C.A.; Bevier, C.R.; Carnaval, A.C. Integrative and objective science is the best link between amphibian decline research and conservation on the ground. Alytes 2012, 29, 119–132. [Google Scholar]
- Beebee, T.J.C. Environmental change as a cause of natterjack toad (Bufo calamita) declines in Britain. Biol. Conserv. 1977, 11, 87–102. [Google Scholar] [CrossRef]
- Beebee, T.J.C.; Griffiths, R.A. The amphibian decline crisis: A watershed for conservation biology? Biol. Conserv. 2005, 125, 271–285. [Google Scholar] [CrossRef]
- Carey, C. How physiological methods and concepts can be useful in conservation biology. Integr. Comp. Biol. 2005, 45, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Maguire, K.C.; Nieto-Lugilde, D.; Fitzpatrick, M.C.; Williams, J.W.; Blois, J.L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Ann. Rev. Ecol. Evol. Syst. 2015, 46, 343–368. [Google Scholar] [CrossRef]
- Sinervo, B.; Méndez-De-La-Cruz, F.; Miles, D.B.; Heulin, B.; Bastiaans, E.; Villagrán-Santa Cruz, M.; Lara-Resendiz, R.; Martínez-Méndez, N.; Calderón-Espinosa, M.L.; Meza-Lázaro, R.N.; et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 2010, 328, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Ceia-Hasse, A.; Sinervo, B.; Vicente, L.; Pereira, H.M. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 2014, 37, 679–688. [Google Scholar] [CrossRef]
- Lara-Reséndiz, R.A.; Gadsden, H.; Rosen, P.C.; Sinervo, B.; Méndez-De la Cruz, F.R. Thermoregulation of two sympatric species of horned lizards in the Chihuahuan Desert and their local extinction risk. J. Therm. Biol. 2015, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dawson, W.R.; Templeton, J.R. Physiological responses to temperature in the alligator lizard, Gerrhonotus multicarinatus. Ecology 1966, 47, 759–765. [Google Scholar] [CrossRef]
- Bennett, J.M.; Calosi, P.; Clusella-Trullas, S.; Martínez, B.; Sunday, J.; Algar, A.C.; Araújo, M.B.; Hawkins, B.A.; Keith, S.; Kühn, I.; et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 2018, 5, 180022. [Google Scholar] [CrossRef] [PubMed]
- Titon, B., Jr.; Gomes, F.R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 2015, 10, e0140761. [Google Scholar] [CrossRef] [PubMed]
- Titon, B., Jr.; Gomes, F.R. Associations of water balance and thermal sensitivity of toads with macroclimatic characteristics of geographical distribution. Comp. Biochem. Physiol. 2017, 208, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Noronha-Souza, C.R.; Bovo, R.P.; Gargaglioni, L.H.; Andrade, D.V.; Bícego, K.C. Thermal biology of the toad Rhinella schneideri in a seminatural environment in southeastern Brazil. Temperature 2015, 2, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 1976, 46, 293–326. [Google Scholar] [CrossRef]
- Feder, M.E. Thermal ecology of neotropical lungless salamanders (Amphibia: Plethodontidae): Environmental temperatures and behavioral responses. Ecology 1982, 63, 1665–1674. [Google Scholar] [CrossRef]
- Titon, B., Jr.; Navas, C.A.; Jim, J.; Gomes, F.R. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comp. Biochem. Physiol. A 2010, 156, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Christian, K.A. Preferred temperature correlates with evaporative water loss in hylid frogs from northern Australia. Physiol. Biochem. Zool. 2005, 78, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Christian, K.A.; Betts, G.; Tracy, C.R. Body temperature and resistance to evaporative water loss in tropical Australian frogs. Comp. Biochem. Physiol. A 2008, 150, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.O.; Andrade, D.V. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. 2017, 7, 9066–9075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, J.E.; Navas, C.A.; Pereira, I. Energy and water in aestivating amphibians. In Aestivation: Molecular and Physiological Aspects, 1st ed.; Navas, C.A., Carvalho, J.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 141–169. ISBN 978-3-64-202420-7. [Google Scholar]
- Sanabria, E.A.; Quiroga, L.B.; Martino, A.L. Seasonal changes in the thermoregulatory strategies of Rhinella arenarum in the Monte desert, Argentina. J. Therm. Biol. 2011, 36, 23–28. [Google Scholar] [CrossRef]
- Riddell, E.A.; Sears, M.W. Geographic variation of resistance to water loss within two species of lungless salamanders: Implications for activity. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Simon, M.N.; Ribeiro, P.L.; Navas, C.A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol. 2015, 48, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Von May, R.; Catenazzi, A.; Corl, A.; Santa-Cruz, R.; Carnaval, A.C.; Moritz, C. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol. Ecol. 2017, 7, 3257–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.C.O.; Bovo, R.B.; Andrade, D.V. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. J. Therm. Biol. 2018, 74, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Porter, W.P.; Gates, D.M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 1969, 39, 227–244. [Google Scholar] [CrossRef]
- Gates, D.M. Biophysical Ecology; Springer: New York, NY, USA, 1980. [Google Scholar]
- Jørgensen, C.B. 200 Years of Amphibian Water Economy: From Robert Townson to the Present. Biol. Rev. 1997, 72, 153–237. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, P.E.; Klaver, R.W.; Porter, W.P. Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrys (=Bufo) boreas, across present and future landscapes. Ecol. Model. 2010, 221, 2675–2686. [Google Scholar] [CrossRef]
- Peterman, W.E.; Gade, M. The importance of assessing parameter sensitivity when using biophysical models: A case study using plethodontid salamanders. Popul. Ecol. 2017, 59, 275–286. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Marshall, K.E.; Sewell, M.A.; Levesque, D.L.; Willett, C.S.; Slotsbo, S.; Dong, Y.; Harley, C.D.G.; Marshall, D.J.; Helmuth, B.S.; et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 2016, 19, 1372–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.A. Temperature tolerance and rates of development in the eggs of Amphibia. Ecology 1939, 20, 459–478. [Google Scholar] [CrossRef]
- Moore, J.A. Adaptative differences in the egg membranes of frogs. Am. Nat. 1940, 74, 89–93. [Google Scholar] [CrossRef]
- Ballinger, R.E.; McKinney, C.O. Developmental temperature tolerance of certain anuran species. J. Exp. Zool. 1966, 161, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, R.G. Reproductive biology of anurans of the arid southwest, with emphasis on adaptation of embryos to temperature. Bull. Am. Mus. Nat. Hist. 1968, 140, 1–64. [Google Scholar]
- Zweifel, R.G. Upper thermal tolerances of anuran embryos in relation to stages of development and breeding habits. Am. Mus. Novit. 1977, 2617, 1–21. [Google Scholar]
- Licht, L.E. Breeding habits and embryonic thermal requirements of the frogs, Rana aurora aurora and Rana pretiosa pretiosa, in the Pacific Northwest. Ecology 1971, 52, 116–124. [Google Scholar] [CrossRef]
- Ultsch, G.R.; Bradford, D.F.; Freda, J. Physiology. Coping with the Environment. In Tadpoles. The Biology of Anuran Larvae, 1st ed.; McDiarmid, R.W., Altig, R.A., Eds.; The University of Chicago Press: Chicago, IL, USA, 1999; pp. 189–214. ISBN 978-0-22-655763-2. [Google Scholar]
- Navas, C.A.; Úbeda, C.A.; Logares, R.; Jara, F.G. Thermal Tolerances in Tadpoles of Three Species of Patagonian Anurans. S. Am. J. Herpetol. 2010, 5, 89–96. [Google Scholar] [CrossRef]
- Duarte, H.; Tejedo, M.; Katzenberger, M.; Marangoni, F.; Baldo, D.; Beltran, J.F.; Martí, D.A.; Richter-Boix, A.; Gonzalez-Voyer, A. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Chang. Biol. 2012, 18, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Pesquera, L.M.; Tejedo, M.; Olalla-Tarraga, M.A.; Duarte, H.; Nicieza, A.; Solé, M. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 2016, 43, 1166–1178. [Google Scholar] [CrossRef]
- Bernal, M.H.; Lynch, J.D. Thermal tolerance in anuran embryos with different reproductive modes: Relationship to altitude. Sci. World J. 2013, 1, 183212. [Google Scholar] [CrossRef] [PubMed]
- Turriago, J.L.; Parra, C.A.; Bernal, M. Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Can. J. Zool. 2015, 93, 267–272. [Google Scholar] [CrossRef]
- Richter-Boix, A.; Katzenberger, M.; Duarte, H.; Quintela, M.; Tejedo, M.; Laurila, A. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 2015, 69, 2210–2226. [Google Scholar] [CrossRef] [PubMed]
- Bartheld, J.L.; Artacho, P.; Bacigalupe, L. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles. J. Therm. Biol. 2017, 70, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Navas, C.A. Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia 1996, 108, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.B.; Cannistra, A.F.; John, A. Leveraging organismal biology to forecast the effects of climate change. Integr. Comp. Biol. 2018, 58, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Angilletta, M., Jr. Thermal Adaptations: A Theoretical and Empirical Synthesis, 1st ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2009; ISBN 978-0-19-857087-5. [Google Scholar]
- Huey, R.B.; Stevenson, R.D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 1979, 19, 357–366. [Google Scholar] [CrossRef]
- Huey, R.B.; Bennett, A.F. Phylogenetic studies of coadaptation: Preferred temperatures versus optimal performance temperatures of lizards. Evolution 1987, 41, 1098–1115. [Google Scholar] [CrossRef] [PubMed]
- Angilletta, M.J.; Niewiarowski, P.E.; Navas, C.A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Watkins, T.B. Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog, Pseudacris regilla. Physiol. Zool. 1996, 69, 154–167. [Google Scholar] [CrossRef]
- Titon, B., Jr.; Gomes, F.R. Balanço hídrico e a distribuição geográfica dos anfíbios. Rev. Biol. 2012, 8, 49–57. [Google Scholar] [CrossRef]
- Spotila, J.R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 1972, 42, 95–125. [Google Scholar] [CrossRef]
- O’Connor, M.P.; Tracy, C.R. Thermal and hydric relations of leopard frogs in the field. Am. Zool. 1987, 27, 118A. [Google Scholar]
- Wells, K.D. The Ecology and Behavior of Amphibians, 1st ed.; The University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Gouveia, S.F.; Correia, I. Geographical clines of body size in terrestrial amphibians: Water conservation hypothesis revisited. J. Biogeogr. 2016, 43, 2075–2084. [Google Scholar] [CrossRef]
- Gouveia, S.F.; Bovo, R.P.; Rubalcalba, J.G.; Silva, F.R.; Maciel, N.M.; Andrade, D.O.V.; Martinez, P.A. Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am. Nat. 2019. [Google Scholar] [CrossRef]
- Lillywhite, H.B. Behavioral temperature regulation in the bullfrog, Rana catesbeiana. Copeia 1970, 158–168. [Google Scholar] [CrossRef]
- Reynolds, W.W.; Casterlin, M.E. Behavioral Thermoregulation and the “Final Preferendum” Paradigm. Amer. Zool. 1979, 19, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Shephard, A.M.; Bharwani, A.; Durisko, Z.; Andrews, P.W. Reverse Engineering the Febrile System. Q. Rev. Biol. 2016, 91, 419–457. [Google Scholar] [CrossRef]
- Berk, M.L.; Heath, J.E. An analysis of behavioral thermoregulation in the lizard, Dipsosaurus dorsalis. J. Therm. Biol. 1975, 1, 15–22. [Google Scholar] [CrossRef]
- DeWitt, C.B. Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 1967, 40, 49–66. [Google Scholar] [CrossRef]
- Barber, B.J.; Crawford, E.C., Jr. A stochastic dual-limit hypothesis for behavioral thermoregulation in lizards. Physiol. Zool. 1977, 50, 53–60. [Google Scholar] [CrossRef]
- Galindo-Martínez, C.A.; Cruz-Rodríguez, E.X.; Bernal, M.H. Evaluation of the combined temperature and relative humidity preferences of the Colombian terrestrial salamander Bolitoglossa ramosi (Amphibia: Plethodontidae). Can. J. Zool. 2018. [Google Scholar] [CrossRef]
- Huey, R.B.; Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 1976, 51, 363–384. [Google Scholar] [CrossRef] [PubMed]
- McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics; Comstock Publishing Associates, Cornell University Press: Ithaca, NY, USA, 2003; ISBN 0-8014-3913-2. [Google Scholar]
- Witters, L.R.; Sievert, L. Feeding causes thermophily in the Woodhouse’s toad (Bufo woodhousii). J. Therm. Biol. 2001, 26, 205–208. [Google Scholar] [CrossRef]
- Lillywhite, H.B.; Navas, C.A. Animals, energy, and water in extreme environments: Perspectives from Ithala 2004. Physiol. Biochem. Zool. 2006, 79, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 2010, 278, 1823–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Thermal tolerance and the redistribution of animals. Nat. Clim. Chang. 2012, 2, 686–690. [Google Scholar] [CrossRef]
- Araújo, M.B.; Ferri-Yáñez, F.; Bozinovic, F.; Marquet, P.A.; Valladares, F.; Chown, S.L. Heat freezes niche evolution. Ecol. Lett. 2013, 16, 1206–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, M.R.; Porter, W.P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Sanabria, E.A.; Quiroga, L.B.; Martino, A.L. Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. J. Therm. Biol. 2012, 37, 409–412. [Google Scholar] [CrossRef]
- Tracy, C.R.; Tixier, T.; Le Noene, C.; Christian, K.A. Field hydration state varies among tropical frog species with different habitat use. Physiol. Biochem. Zool. 2014, 87, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Gvoždík, L.; Puky, M.; Sugerkova, M. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol. J. Linn. Soc. 2007, 90, 627–636. [Google Scholar] [CrossRef]
- Diamond, S.E.; Yilmaz, A.R. The role of tolerance variation in vulnerability forecasting of insects. Curr. Opin. Insect Sci. 2018, 29, 85–92. [Google Scholar] [CrossRef]
- Niehaus, A.C.; Angilletta, M.J.; Sears, M.W.; Franklin, C.E.; Wilson, R.S. Predicting the physiological performance of ectotherms in fluctuations thermal environments. J. Exp. Biol. 2012, 215, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Carvajalino, J.M.; Bonilla, M.A.; Navas, C.A. Freezing risk in tropical high-elevation anurans: An assessment based on the Andean frog Pristimantis nervicus (Strobomantidae). S. Am. J. Herpetol. 2011, 6, 73–78. [Google Scholar] [CrossRef]
- Navas, C.A.; Carvajalino-Fernández, J.M.; Saboyá-Acosta, L.P.; Rueda-Solano, L.A.; Carvajalino-Fernández, M.A. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Funct. Ecol. 2013, 27, 1145–1154. [Google Scholar] [CrossRef]
- Navas, C.A.; Antoniazzi, M.M.; Carvalho, J.E.; Suzuki, H.; Jared, C. Physiological basis for diurnal activity in dispersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp. Biochem. Phys. A 2007, 147, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Christian, K.A.; Burnip, N.; Austin, B.J.; Cornall, A.; Iglesias, S.; Reynolds, S.J.; Tixier, T.; Le Noene, C. Thermal and hydric implications of diurnal activity by a small tropical frog during the dry season. Austral Ecol. 2013, 38, 476–483. [Google Scholar] [CrossRef]
- Costanzo, J.P.; Lee, R.E., Jr. Avoidance and tolerance of freezing in ectothermic vertebrates. J. Exp. Biol. 2013, 216, 1961–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, P.L.; Camacho, A.; Navas, C.A. Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf-cutting ants. PLoS ONE 2012, 7, e32083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejedo, M.; Marangoni, F.; Pertoldi, C.; Richter-Boix, A.; Laurila, A.; Orizaola, G.; Nicieza, A.G.; Álvarez, D.; Gomez-Mestre, I. Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Clim. Res. 2010, 43, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Seebacher, F.; White, C.R.; Franklin, C.E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 2017, 5, 61–66. [Google Scholar] [CrossRef]
- Gunderson, A.R.; Stillman, J.H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150401. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.C.; Bocedi, G.; Hendry, A.P.; Mihoub, J.B.; Pe’er, G.; Singer, A.; Bridle, J.R.; Crozier, L.G.; De Meester, L.; Godsoe, W.; et al. Improving the forecast for biodiversity under climate change. Science 2016, 353, aad8466. [Google Scholar] [CrossRef] [PubMed]
- Kopp, M.; Matuszewski, S. Rapid evolution of quantitative traits: Theoretical perspectives. Evol. Appl. 2014, 7, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: The dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538. [Google Scholar] [CrossRef]
- Bush, A.; Mokany, K.; Catullo, R.; Hoffmann, A.; Kellermann, V.; Sgrò, C.; McEvey, S.; Ferrier, S.; Coulson, T. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 2016, 19, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Malishev, M.; Bull, C.M.; Kearney, M.R. An individual-based model of ectotherm movement integrating metabolic and microclimatic constraints. Methods Ecol. Evol. 2018, 9, 472–489. [Google Scholar] [CrossRef]
- Rubalcaba, J.G.; Gouveia, S.F.; Olalla-Tárraga, M.A. A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Glob. Ecol. Biogeogr. 2018, accepted. [Google Scholar]
- Kearney, M.; Shine, R.; Porter, W.P. The potential for behavioural thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. USA 2009, 106, 3835–3840. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovo, R.P.; Navas, C.A.; Tejedo, M.; Valença, S.E.S.; Gouveia, S.F. Ecophysiology of Amphibians: Information for Best Mechanistic Models. Diversity 2018, 10, 118. https://doi.org/10.3390/d10040118
Bovo RP, Navas CA, Tejedo M, Valença SES, Gouveia SF. Ecophysiology of Amphibians: Information for Best Mechanistic Models. Diversity. 2018; 10(4):118. https://doi.org/10.3390/d10040118
Chicago/Turabian StyleBovo, Rafael P., Carlos A. Navas, Miguel Tejedo, Saulo E. S. Valença, and Sidney F. Gouveia. 2018. "Ecophysiology of Amphibians: Information for Best Mechanistic Models" Diversity 10, no. 4: 118. https://doi.org/10.3390/d10040118
APA StyleBovo, R. P., Navas, C. A., Tejedo, M., Valença, S. E. S., & Gouveia, S. F. (2018). Ecophysiology of Amphibians: Information for Best Mechanistic Models. Diversity, 10(4), 118. https://doi.org/10.3390/d10040118