6-((2-Oxoindolin-3-ylidene)hydrazineylidene)indolo[2,1-b]qui-nazolin-12(6H)-one
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. DFT Investigation of Geometric Isomerism
3. Materials and Methods
3.1. General
3.2. Synthesis and Characterization
3.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almutairi, F.M.; Ali, A.G.; Abdelhamid, A.O.; Alalawy, A.I.; Bishr, M.K.; Mohamed, M.S. The Identification of a Novel Unsymmetrical Azine as an Apoptosis Inducer in Colorectal Cancer. Anticancer Agents Med. Chem. 2021, 21, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, R.J.; Dahlhausen, D.J.; Manikumar, G.; Mavunkel, B.; Biswas, A.; Srinivasan, V.; Musallam, H.A.; Reid, W.A., Jr.; Ager, A.L. Cationic antiprotozoal drugs. Trypanocidal activity of 2-(4′-formylphenyl)imidazo[1,2-a]pyridinium guanylhydrazones and related derivatives of quaternary heteroaromatic compounds. J. Med. Chem. 1990, 33, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Chourasiya, S.S.; Kathuria, D.; Wani, A.A.; Bharatam, P.V. Azines: Synthesis, structure, electronic structure and their applications. Org. Biomol. Chem. 2019, 17, 8486–8521. [Google Scholar] [CrossRef] [PubMed]
- Kovrizhina, A.R.; Samorodova, E.I.; Khlebnikov, A.I. 11H-Indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone. Molbank 2021, 2021, M1299. [Google Scholar] [CrossRef]
- Hopkins, J.M.; Bowdridge, M.; Robertson, K.N.; Cameron, T.S.; Jenkins, H.A.; Clyburne, J.A. Generation of azines by the reaction of a nucleophilic carbene with diazoalkanes: A synthetic and crystallographic study. J. Org. Chem. 2001, 66, 5713–5716. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med. Chem. 2024, 15, 1127–1147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, S.T.; Chern, J.W.; Chen, T.M.; Chiu, Y.F.; Chen, H.T.; Chen, Y.H. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines. Acta Pharmacol. Sin. 2010, 31, 259–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheke, R.S.; Patil, V.M.; Firke, S.D.; Ambhore, J.P.; Ansari, I.A.; Patel, H.M.; Shinde, S.D.; Pasupuleti, V.R.; Hassan, M.I.; Adnan, M.; et al. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals 2022, 15, 272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. 2020, 353, 1900367. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Rajendar, G.; Lankalapalli, R.S. Synthetic diversification of tryptanthrin through its C6-hydrazone. Tetrahedron Lett. 2023, 129, 154752. [Google Scholar] [CrossRef]
- Warren, C.H.; Wettermark, G.; Weiss, K. Cis-trans isomerization about the carbon-nitrogen double bond. Structures of the isomers of N-benzylideneaniline. J. Am. Chem. Soc. 1971, 93, 4658–4663. [Google Scholar]
- Bain, A.D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63–103. [Google Scholar] [CrossRef]
- Dugave, C.; Demange, L. cis-trans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 2003, 103, 2475–2532. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2008, 113, 9978–9985. [Google Scholar] [CrossRef]
- Ásgeirsson, V.; Birgisson, B.O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H. Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. J. Chem. Theory Comput. 2021, 17, 4929–4945. [Google Scholar] [CrossRef] [PubMed]
- Jasien, P.G.; Stevens, W.G.; Krauss, M. Ab initio calculations of the rotational barriers in formamide and acetamide. The effects of polarization functions and correlation. J. Mol. Struct. THEOCHEM 1986, 139, 197–206. [Google Scholar] [CrossRef]
- Spicher, S.; Grimme, S. Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angew. Chem. Int. Ed. Engl. 2020, 59, 15665–15673. [Google Scholar] [CrossRef]
- de Souza, B. GOAT: A Global Optimization Algorithm for Molecules and Atomic Clusters. Angew. Chem. Int. Ed. Engl. 2025, 64, E202500393. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software Update: The ORCA Program System—Version 6.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2025, 15, e70019. [Google Scholar] [CrossRef]
- Sure, R.; Grimme, S. Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 2013, 34, 1672–1685. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Samorodova, E.I.; Kovrizhina, A.R.; Khlebnikov, A.I. 6-((2-Oxoindolin-3-ylidene)hydrazineylidene)indolo[2,1-b]qui-nazolin-12(6H)-one. Molbank 2026, 2026, M2121. https://doi.org/10.3390/M2121
Samorodova EI, Kovrizhina AR, Khlebnikov AI. 6-((2-Oxoindolin-3-ylidene)hydrazineylidene)indolo[2,1-b]qui-nazolin-12(6H)-one. Molbank. 2026; 2026(1):M2121. https://doi.org/10.3390/M2121
Chicago/Turabian StyleSamorodova, Elizaveta I., Anastasia R. Kovrizhina, and Andrei I. Khlebnikov. 2026. "6-((2-Oxoindolin-3-ylidene)hydrazineylidene)indolo[2,1-b]qui-nazolin-12(6H)-one" Molbank 2026, no. 1: M2121. https://doi.org/10.3390/M2121
APA StyleSamorodova, E. I., Kovrizhina, A. R., & Khlebnikov, A. I. (2026). 6-((2-Oxoindolin-3-ylidene)hydrazineylidene)indolo[2,1-b]qui-nazolin-12(6H)-one. Molbank, 2026(1), M2121. https://doi.org/10.3390/M2121

