2-Cyclopropyl-6-phenyl-2,3-dihydrothieno[3,2-d][1,3,2]diazaborinin-4(1H)-one
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Malaria Report 2020: 20 Years of Global Progress and Challenges; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-001579-1. [Google Scholar]
- Straimer, J.; Gnadig, N.F.; Witkowski, B.; Amaratunga, C.; Duru, V.; Ramadani, A.P.; Dacheux, M.; Khim, N.; Zhang, L.; Lam, S.; et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 2015, 347, 428–431. [Google Scholar] [CrossRef] [PubMed]
- van der Pluijm, R.W.; Imwong, M.; Chau, N.H.; Hoa, N.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Jittamala, P.; Hanboonkunupakarn, B.; Chutasmit, K.; Saelow, C.; et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: A prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 2019, 19, 952–961. [Google Scholar] [CrossRef]
- Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.-L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.-B.; Munguti, K.; et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 2020, 26, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habiman, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 2021, 8. [Google Scholar] [CrossRef]
- Cohen, A.; Suzanne, P.; Lancelot, J.-C.; Verhaeghe, P.; Lesnard, A.; Basmaciyan, L.; Hutter, S.; Laget, M.; Dumètre, A.; Paloque, L.; et al. Discovery of new thienopyrimidinone derivatives displaying antimalarial properties toward both erythrocytic and hepatic stages of Plasmodium. Eur. J. Med. Chem. 2015, 95, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.M.H.; Abdel-Maksoud, M.S.; Oh, C.-H. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorganic Med. Chem. 2019, 27, 1159–1194. [Google Scholar] [CrossRef] [PubMed]
- Kurasawa, O.; Miyazaki, T.; Homma, M.; Oguro, Y.; Imada, T.; Uchiyama, N.; Iwai, K.; Yamamoto, Y.; Ohori, M.; Hara, H.; et al. Discovery of a novel, highly potent, and selective thieno[3,2-d]pyrimidinone-based Cdc7 inhibitor with a quinuclidine moiety (TAK-931) as an orally active investigational antitumor agent. J. Med. Chem. 2020, 21, 1084–1104. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhu, M.; Zhang, J.; Zhou, H. Synthesis of biologically active boron-containing compounds. MedChemComm 2018, 11, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.H.M.; Mukhtar, A.; Saeednia, B.; Sherafat, F.; Kelly, C.B.; Molander, G.A. Azaborininones: Synthesis and structural analysis of a carbonyl-containing class of azaborines. J. Org. Chem. 2017, 82, 5380–5390. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Eichenauer, N.; Ihara, H.; Yamamoto, T.; Suginome, M. Anthranilamide-masked o-iodoarylboronic acids as coupling modules for iterative synthesis of ortho-linked oligoarenes. Chem. Lett. 2013, 42, 541–543. [Google Scholar] [CrossRef]
- Kamio, S.; Kageyuki, I.; Osaka, I.; Hatano, S.; Abe, M.; Yoshida, H. Anthranilamide (aam)-substituted diboron: Palladium-catalyzed selective b(aam) transfer. Chem. Commun. 2018, 54, 9290–9293. [Google Scholar] [CrossRef] [PubMed]
- Kamio, S.; Kageyuki, I.; Osaka, I.; Yoshida, H. Anthranilamide (aam)-substituted arylboranes in direct carbon–carbon bond-forming reactions. Chem. Commun. 2019, 55, 2624–2627. [Google Scholar] [CrossRef] [PubMed]
- Morwick, T.; Berry, A.; Brickwood, J.; Cardozo, M.; Catron, K.; DeTuri, M.; Emeigh, J.; Homon, C.; Hrapchak, M.; Jacober, S.; et al. Evolution of the thienopyridine class of inhibitors of IκB kinase-β: Part I: Hit-to-lead strategies. J. Med. Chem. 2006, 49, 2898–2908. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.M.; Gillis, E.P.; Burke, M.D. A general solution for unstable boronic acids: Slow-release ross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc. 2009, 131, 6961–6963. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustière, R.; Vanelle, P.; Primas, N. 2-Cyclopropyl-6-phenyl-2,3-dihydrothieno[3,2-d][1,3,2]diazaborinin-4(1H)-one. Molbank 2021, 2021, M1221. https://doi.org/10.3390/M1221
Mustière R, Vanelle P, Primas N. 2-Cyclopropyl-6-phenyl-2,3-dihydrothieno[3,2-d][1,3,2]diazaborinin-4(1H)-one. Molbank. 2021; 2021(2):M1221. https://doi.org/10.3390/M1221
Chicago/Turabian StyleMustière, Romain, Patrice Vanelle, and Nicolas Primas. 2021. "2-Cyclopropyl-6-phenyl-2,3-dihydrothieno[3,2-d][1,3,2]diazaborinin-4(1H)-one" Molbank 2021, no. 2: M1221. https://doi.org/10.3390/M1221
APA StyleMustière, R., Vanelle, P., & Primas, N. (2021). 2-Cyclopropyl-6-phenyl-2,3-dihydrothieno[3,2-d][1,3,2]diazaborinin-4(1H)-one. Molbank, 2021(2), M1221. https://doi.org/10.3390/M1221