2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Synthesis of 2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.H.; Zhang, X.X.; Jin, L.L.; Yang, S.; Lei, P.S. Synthesis and antibacterial activity of novel ketolides with 11,12-quinoylalkyl side chains. Bioorg. Med. Chem. Lett. 2018, 28, 2358–2363. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Yi, L.; Wang, X.; Zhang, Y.; Liu, J.; Guo, X.; Liu, L.; Shao, C.; Xin, L. A novel antimicrobial substance produced by Lactobacillus rhamnous LS8. Food Control 2017, 73, 754–760. [Google Scholar] [CrossRef]
- Journal, E.; Pathology, P. Biological control of grapevine crown gall: Purification and partial characterisation of an antibacterial substance. Eur. J. Plant. Pathol. 2009, 124, 427–437. [Google Scholar]
- Hakimelahi, G.H.; Li, P.C.; Moosavimovahedi, A.A.; Chamani, J.; Khodarahmi, G.A.; Ly, T.W.; Valiyev, F.; Leong, M.K.; Hakimelahi, S.; Shia, K.S. Application of the Barton photochemical reaction in the synthesis of 1-dethia-3-aza-1-carba-2-oxacephem: A novel agent against resistant pathogenic microorganisms. Org. Biomol. Chem. 2003, 1, 2461–2467. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Doi, M.; Nagata, H.; Kubota, T.; Kume, M.; Murakami, K. The 7α-methoxy substituent in cephem or oxacephem antibiotics enhances in vivo anti-Helicobacter felis activity in mice after oral administration. J. Antimicrob. Chemother. 2000, 45, 807–811. [Google Scholar] [CrossRef]
- Tombor, Z.; Greff, Z.; Nyitrai, J.; Kajtár-Peredy, M. Simple and condensed β-lactams, XIX. Synthesis of some new 7-acylamino-2-iso-oxacephem-4-carboxylic acids. Liebigs Ann. 1995, 1995, 825–835. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, F.; Han, Y.; Chen, H.; Luo, Z.; Tian, H.; Zhao, Y.; Ma, A.; Zhu, L. Hydrogen-Bonded Organic–Inorganic Hybrid Based on Hexachloroplatinate and Nitrogen Heterocyclic Cations: Their Synthesis, Characterization, Crystal Structures, and Antitumor Activities In Vitro. Molecules 2018, 23, 1397. [Google Scholar] [CrossRef]
- Liu, E.; Jian, F. Anionic Water Cluster Polymers [(H2O)18(OH)2]n2n− Is Stabilized by Bis(2,2′-bipyridine) Cupric Chloride [Cu(bipy)2Cl]−. Molecules 2018, 23, 195. [Google Scholar] [CrossRef]
- Vasile Scăețeanu, G.; Chifiriuc, M.C.; Bleotu, C.; Kamerzan, C.; Măruţescu, L.; Daniliuc, C.G.; Maxim, C.; Calu, L.; Olar, R.; Badea, M. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2′-Bipyridine. Molecules 2018, 23, 157. [Google Scholar] [CrossRef]
- Hussain, M.; Hung, N.T.; Khera, R.A.; Malik, I.; Zinad, D.S.; Langer, P. Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki–Miyura Cross-Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine. Adv. Synth. Catal. 2010, 352, 1429–1433. [Google Scholar] [CrossRef]
- Zinad, D.S.; Feist, H.; Villinger, A.; Langer, P. Suzuki-Miyaura reactions of the bis(triflates) of 1,3- and 1,4-dihydroxythioxanthone. Electronic and steric effects on the site-selectivity. Tetrahedron 2012, 68, 711–721. [Google Scholar] [CrossRef]
- Zinad, D.S.; Hussain, M.; Villinger, A.; Langer, P. Site-Selective Synthesis of Arylated Indenones by Suzuki–Miyaura Cross-Coupling Reactions of 2,3,5-Tribromoinden-1-one. Eur. J. Org. Chem. 2011, 4212–4221. [Google Scholar] [CrossRef]
- Hussain, M.; Zinad, D.S.; Salman, G.A.; Sharif, M.; Villinger, A.; Langer, P. One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective Suzuki–Miyaura Reactions of N-Methyl-2,3-dibromoindole. Synlett 2010, 3, 411–414. [Google Scholar]
- Ibad, M.F.; Zinad, D.S.; Hussain, M.; Ali, A.; Villinger, A.; Langer, P. One-pot synthesis of arylated 1-methyl-1H-indoles by Suzuki-Miyaura cross-coupling reactions of 2,3-dibromo-1-methyl-1H-indole and 2,3,6-tribromo-1-methyl-1H-indole. Tetrahedron 2013, 69, 7492–7504. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Musa, A.Y.; Kadhum, A.H.; Mohamad, A.B. The use of umbelliferone in the synthesis of new heterocyclic compounds. Molecules 2011, 16, 6833–6843. [Google Scholar] [CrossRef]
- Kadhum, A.A.H.; Al-Amiery, A.A.; Musa, A.Y.; Mohamad, A.B. The Antioxidant Activity of New Coumarin Derivatives. Int. J. Mol. Sci. 2011, 12, 5747–5761. [Google Scholar] [CrossRef] [Green Version]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.A. Antifungal Activities of New Coumarins. Molecules 2012, 17, 5713–5723. [Google Scholar] [CrossRef] [Green Version]
- Al-Majedy, Y.K.; Al-Duhaidahawi, D.L.; Al-Azawi, K.F.; Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.B. Coumarins as Potential Antioxidant Agents Complemented with Suggested Mechanisms and Approved by Molecular Modeling Studies. Molecules 2016, 21, 135. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. New Coumarin Derivative as an Eco-Friendly Inhibitor of Corrosion of Mild Steel in Acid Medium. Molecules 2015, 20, 366–383. [Google Scholar] [CrossRef]
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Synthesis and Characterization of Some New 4-Hydroxy-coumarin Derivatives. Molecules 2014, 19, 11791–11799. [Google Scholar] [CrossRef] [Green Version]
- Kadhum, A.A.H.; Mohamad, A.B.; Hammed, L.A.; Al-Amiery, A.A.; San, N.H.; Musa, A.Y. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin. Materials 2014, 7, 4335–4348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Kadihum, A.; Mohamad, A.B.; How, C.K.; Junaedi, S. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base. Materials 2014, 7, 787–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Alobaidy, A.H.M.; Mohamad, A.B.; Hoon, P.S. Novel Corrosion Inhibitor for Mild Steel in HCl. Materials 2014, 7, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.B.; Junaedi, S. A Novel Hydrazinecarbothioamide as a Potential Corrosion Inhibitor for Mild Steel in HCl. Materials 2013, 6, 1420–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinad, D.S.; AL-Duhaidahaw, D.L.; Al-Amiery, A. 2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine. Molbank 2019, 2019, M1040. https://doi.org/10.3390/M1040
Zinad DS, AL-Duhaidahaw DL, Al-Amiery A. 2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine. Molbank. 2019; 2019(1):M1040. https://doi.org/10.3390/M1040
Chicago/Turabian StyleZinad, Dhafer Saber, Dunya L. AL-Duhaidahaw, and Ahmed Al-Amiery. 2019. "2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine" Molbank 2019, no. 1: M1040. https://doi.org/10.3390/M1040
APA StyleZinad, D. S., AL-Duhaidahaw, D. L., & Al-Amiery, A. (2019). 2′-Chloro-4-(1-methyl-1H-imidazol-2-yl)-2,4′-bipyridine. Molbank, 2019(1), M1040. https://doi.org/10.3390/M1040