Synthesis of Imine Congeners of Resveratrol and Evaluation of Their Anti-Platelet Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Anti-Platelet Activity
2.3. Structure Activity Relationship
3. Materials and Methods
3.1. General Procedure for the Preparation of 3a–3r
3.2. Anti-Platelet Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Organization, W.H. Cardiovascular Diseases. Fact Sheet 317. 2007. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 May 2017).
- Palmer, M.; Sutherland, J.; Barnard, S.; Wynne, A.; Rezel, E.; Doel, A.; Grigsby-Duffy, L.; Edwards, S.; Russell, S.; Hotopf, E. The effectiveness of smoking cessation, physical activity/diet and alcohol reduction interventions delivered by mobile phones for the prevention of non-communicable diseases: A systematic review of randomised controlled trials. PLoS ONE 2018, 13, e0189801. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Patel, K.; Crane, T. A review of antiplatelet drugs, coronary artery diseases and cardiopulmonary bypass. J. Extr.-Corporeal Technol. 2010, 42, 103. [Google Scholar]
- Guthrie, R. Review and management of side effects associated with antiplatelet therapy for prevention of recurrent cerebrovascular events. Adv. Ther. 2011, 28, 473. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Fokou, P.; Sharopov, F.; Martorell, M.; Ademiluyi, A.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018, 23, 1751. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Albayrak, S.; Antolak, H.; Kręgiel, D.; Pawlikowska, E.; Sharifi-Rad, M.; Uprety, Y.; Tsouh Fokou, P.; Yousef, Z.; Amiruddin Zakaria, Z. Aloe genus plants: From farm to food applications and phytopharmacotherapy. Int. J. Mol. Sci. 2018, 19, 2843. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.A.; Sharifi-Rad, M.; Shariati, M.; Mabkhot, Y.; Al-Showiman, S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P. Bioactive compounds and health benefits of edible Rumex species-a review. Cell. Mol. Biol. (Noisy-le-Grand, France) 2018, 64, 27. [Google Scholar] [CrossRef]
- Mishra, A.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. Satyrium nepalense, a high altitude medicinal orchid of indian himalayan region: Chemical profile and biological activities of tuber extracts. Cell. Mol. Biol. (Noisy-le-Grand, France) 2018, 64, 35–43. [Google Scholar] [CrossRef]
- Guo, Z. The modification of natural products for medical use. Acta Pharm. Sinica B 2017, 7, 119–136. [Google Scholar] [CrossRef]
- Bovicelli, P.; Bernini, R.; Antonioletti, R.; Mincione, E. Selective halogenation of flavanones. Tetrahedron Lett. 2002, 43, 5563–5567. [Google Scholar] [CrossRef]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramírez-Alarcón, K.; Stojanović-Radić, Z.Z.; Antolak, H.; Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets 2005, 16, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Wang, X.-B.; Kong, L.-Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 2014, 71, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Vitalini, S. Chemical diversity of grape products, a complex blend of bioactive secondary metabolites. Nat. Prod. J. 2011, 1, 71–74. [Google Scholar]
- Shen, M.Y.; Hsiao, G.; Liu, C.L.; Fong, T.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. Inhibitory mechanisms of resveratrol in platelet activation: Pivotal roles of p38 mapk and no/cyclic gmp. Br. J. Haematology 2007, 139, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Orsini, F.; Pelizzoni, F.; Verotta, L.; Aburjai, T.; Rogers, C.B. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-β-d-glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082–1087. [Google Scholar] [CrossRef]
- Dutra, L.A.; Guanaes, J.F.O.; Johmann, N.; Pires, M.E.L.; Chin, C.M.; Marcondes, S.; Dos Santos, J.L. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with no-donor properties. Bioorg. Med. Chem. Lett. 2017, 27, 2450–2453. [Google Scholar] [CrossRef]
- Tehrani, K.H.M.E.; Sardari, S.; Mashayekhi, V.; Zadeh, M.E.; Azerang, P.; Kobarfard, F. One pot synthesis and biological activity evaluation of novel schiff bases derived from 2-hydrazinyl-1,3,4-thiadiazole. Chem. Pharm. Bull. 2013, 61, 160–166. [Google Scholar] [CrossRef]
- Akhlaghi, M.F.; Amidi, S.; Esfahanizadeh, M.; Daeihamed, M.; Kobarfard, F. Synthesis of n-arylmethyl substituted indole derivatives as new antiplatelet aggregation agents. Iranian J. Pharm. Res. 2014, 13, 35. [Google Scholar]
- Lourenço, A.L.; Salvador, R.R.; Silva, L.A.; Saito, M.S.; Mello, J.F.; Cabral, L.M.; Rodrigues, C.R.; Vera, M.A.; Muri, E.M.; de Souza, A.M. Synthesis and mechanistic evaluation of novel N′-benzylidene-carbohydrazide-1H-pyrazolo [3,4-b] pyridine derivatives as non-anionic antiplatelet agents. Eur. J. Med. Chem. 2017, 135, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Mirfazli, S.S.; Kobarfard, F.; Firoozpour, L.; Asadipour, A.; Esfahanizadeh, M.; Tabib, K.; Shafiee, A.; Foroumadi, A. N-substituted indole carbohydrazide derivatives: Synthesis and evaluation of their antiplatelet aggregation activity. DARU J. Pharm. Sci. 2014, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Mirfazli, S.S.; Khoshneviszadeh, M.; Jeiroudi, M.; Foroumadi, A.; Kobarfard, F.; Shafiee, A. Design, synthesis and qsar study of arylidene indoles as anti-platelet aggregation inhibitors. Med. Chem. Res. 2016, 25, 1–18. [Google Scholar] [CrossRef]
- Tehrani, K.H.M.E.; Zadeh, M.E.; Mashayekhi, V.; Hashemi, M.; Kobarfard, F.; Gharebaghi, F.; Mohebbi, S. Synthesis, antiplatelet activity and cytotoxicity assessment of indole-based hydrazone derivatives. Iranian J. Pharm. Res. 2015, 14, 1077. [Google Scholar]
- Kalhor, N.; Mardani, M.; Abdollahzadeh, S.; Vakof, M.; Zadeh, M.E.; Tehrani, K.H.M.E.; Kobarfard, F.; Mohebbi, S. Novel N-substituted ((1H-indol-3-yl)methylene)benzohydrazides and ((1H-indol-3-yl)methylene)-2-phenylhydrazines: Synthesis and antiplatelet aggregation activity. Bull. Korean Chem. Soc. 2015, 36, 2632–2639. [Google Scholar] [CrossRef]
- Mashayekhi, V.; Tehrani, K.H.M.E.; Amidi, S.; Kobarfard, F. Synthesis of novel indole hydrazone derivatives and evaluation of their antiplatelet aggregation activity. Chem. Pharm. Bull. 2013, 61, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005, 12, 23–49. [Google Scholar] [CrossRef] [PubMed]
- Amidi, S.; Kobarfard, F.; Moghaddam, A.B.; Tabib, K.; Soleymani, Z. Electrochemical synthesis of novel 1, 3-indandione derivatives and evaluation of their antiplatelet aggregation activities. Iranian J. Pharm. Res. 2013, 12, 91. [Google Scholar]
- Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef]
- Iovel, I.; Golomba, L.; Fleisher, M.; Popelis, J.; Grinberga, S.; Lukevics, E. Hydrosilylation of (hetero) aromatic aldimines in the presence of a Pd (I) complex. Chem. Heterocycl. Compd. 2004, 40, 701–714. [Google Scholar] [CrossRef]
- Cheng, L.-X.; Tang, J.-J.; Luo, H.; Jin, X.-L.; Dai, F.; Yang, J.; Qian, Y.-P.; Li, X.-Z.; Zhou, B. Antioxidant and antiproliferative activities of hydroxyl-substituted schiff bases. Bioorg. Med. Chem. Lett. 2010, 20, 2417–2420. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.; Hassan, A.; Ibraheem, N.; Hekal, B. Synthesis and comparative studies of cyclopalladated complexes with ortho c‒h activation of aromatic rings bearing electron donating and electron withdrawing groups. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2015, 45, 813–820. [Google Scholar] [CrossRef]
- Gebretekle, D.; Tadesse, A.; Upadhyay, R.; Dekebo, A. Synthesis, characterization and antimicrobial evaluation of some schiff bases and their thiazolidinone products. Oriental J. Chem. 2012, 28, 1791–1796. [Google Scholar] [CrossRef]
- Grammaticakis, P.; Texier, H. Contribution al’étude de l’absorption dans l’ultraviolet moyen et le visible de derivés fonctionnels azotés de quelques aldéhydes et cétones aromatiques. X.—aniles (premier mémoire). Bull. Soc. Chim. Fr. 1971, 38, 1323–1330. [Google Scholar]
- Oliveira Calil, N.; Senra Goncalves de Carvalho, G.; Farah da Silva, A.; David da Silva, A.; Rezende Barbosa Raposo, N. Antioxidant activity of synthetic resveratrol analogs: A structure-activity insight. Lett. Drug Des. Discovery 2012, 9, 676–679. [Google Scholar] [CrossRef]
- Ceyhan, G.; Köse, M.; Tümer, M.; Demirtaş, İ. Anticancer, photoluminescence and electrochemical properties of structurally characterized two imine derivatives. Spectrochim. Acta Part A Mol. Biomolecular. Spectrosc. 2015, 149, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Kazantsev, A.V.; Aksartov, M.M.; Zakharkin, L.I. 1,4-Addition der lithium-und magnesiumderivate von o-carboranen an alpha, beta-nitroolefine. Zh. Obshch. Khim. [J. Gen. Chem. USSR (Engl. Transl.)] 1971, 41, 57. [Google Scholar]
- Singleton, F.; Pollard, C. Reactions of aldehydes with amines. I. With o-aminophenol. J. Am. Chem. Soc. 1940, 62, 2288–2289. [Google Scholar] [CrossRef]
- Lorigooini, Z.; Ayatollahi, S.A.; Amidi, S.; Kobarfard, F. Evaluation of anti-platelet aggregation effect of some Allium species. Iranian J. Pharm. Res. 2015, 14, 1225. [Google Scholar]
- Amidi, S.; Esfahanizadeh, M.; Tabib, K.; Soleimani, Z.; Kobarfard, F. Rational design and synthesis of 1-(arylideneamino)-4-aryl-1H-imidazole-2-amine derivatives as antiplatelet agents. Chem. Med. Chem. 2017, 12, 962–971. [Google Scholar] [CrossRef]
Compound | R | R′ | AA a Inhibition (%) | AA (IC50 µM) | ADP a Inhibition (%) | Collagen a Inhibition (%) |
---|---|---|---|---|---|---|
3a | 4-OCH3 | - | 74.7 ± 2.5 | 301.0 ± 8.7 | 43.2 ± 3.3 | 15.9 ± 1.5 |
3b | 3-OCH3, 4-OH | - | 100 | 180.2 ± 5.4 | 52.1 ± 2.2 | 39.0 ± 8.8 |
3c | 2-OH | 4′-OCH3 | 100 | 86.1 ± 6.6 | 30.2 ± 5.3 | 46.8 ± 4.3 |
3d | 4-OCH3 | 4′-OCH3 | 100 | 155.5 ± 4.3 | 41.4 ± 6.4 | 29.1 ± 1.9 |
3e | 3,4-dimethoxy | 4′-OCH3 | 100 | 73.6 ± 3.4 | 63.2 ± 3.1 | 80.7 ± 1.4 |
3f | 4-CH3 | 4′-OCH3 | 100 | 143.3 ± 6.2 | 33.6 ± 1.4 | 60.0 ± 4.1 |
3g | 3-OCH3, 4-OH | 4′-OCH3 | 94.9 ± 0.7 | 179.2 ± 7.1 | 34.4 ± 5.6 | 41.0 ± 6.6 |
3h | 3-OCH3 | 4′-OH | 100 | 69.1 ± 5.4 | 77.4 ± 1.9 | 73.1 ± 2.1 |
3i | 2-OH | 4′-OH | 100 | 29.9 ± 1.1 | 36.3 ± 3.9 | 70.8 ± 1.3 |
3j | 4-OCH3 | 4′-OH | 100 | 68.3 ± 1.4 | 44.1 ± 3.6 | 67.2 ± 3.2 |
3k | 4-CH3 | 4′-OH | 100 | 65.4 ± 3.4 | 45.8 ± 3.3 | 59.03 ± 6.2 |
3l | 3,4-dimethoxy | 4′-OH | 93.7 ± 5.6 | 65.3 ± 2.0 | 53.5 ± 2.7 | 67.8 ± 3.5 |
3m | 3,4,5-trimethoxy | 4′-OH | 88.0 ± 3.1 | 65.2 ± 3.4 | 84.6 ± 1.1 | 93.4 ± 0.9 |
3n | 3-OH | 4′-OH | 100 | 62.3 ± 7.1 | 33.4 ± 3.5 | 80.5 ± 1.4 |
3o | 2-OCH3 | 4′-OH | 92.4 ± 2.1 | 130.7 ± 5.1 | 43.8 ± 1.6 | 74.9 ± 3.4 |
3p | 2-OH | 2′-OH | 95.1 ± 3.0 | 65.5 ± 4.3 | 41.1 ± 3.7 | 70.2 ± 2.5 |
3q | 3-OH | 2′-OH | 100 | 30.7 ± 1.2 | 38.4 ± 3.9 | 36.1 ± 3.5 |
3r | 4-CH3 | 2′-OH | 100 | 19.8 ± 1.1 | 39.8 ± 3.2 | 63.5 ± 1.3 |
Indomethacin | 1.67 ± 0.67 | 42.0 ± 1.1 | ||||
Acetyl salicylic acid (ASA) | 0.24 ± 0.05 | 21.0 ± 0.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigdeli, M.; Sabbaghan, M.; Esfahanizadeh, M.; Kobarfard, F.; Vitalini, S.; Iriti, M.; Sharifi-Rad, J. Synthesis of Imine Congeners of Resveratrol and Evaluation of Their Anti-Platelet Activity. Molbank 2019, 2019, M1039. https://doi.org/10.3390/M1039
Bigdeli M, Sabbaghan M, Esfahanizadeh M, Kobarfard F, Vitalini S, Iriti M, Sharifi-Rad J. Synthesis of Imine Congeners of Resveratrol and Evaluation of Their Anti-Platelet Activity. Molbank. 2019; 2019(1):M1039. https://doi.org/10.3390/M1039
Chicago/Turabian StyleBigdeli, Mohammad, Maryam Sabbaghan, Marjan Esfahanizadeh, Farzad Kobarfard, Sara Vitalini, Marcello Iriti, and Javad Sharifi-Rad. 2019. "Synthesis of Imine Congeners of Resveratrol and Evaluation of Their Anti-Platelet Activity" Molbank 2019, no. 1: M1039. https://doi.org/10.3390/M1039
APA StyleBigdeli, M., Sabbaghan, M., Esfahanizadeh, M., Kobarfard, F., Vitalini, S., Iriti, M., & Sharifi-Rad, J. (2019). Synthesis of Imine Congeners of Resveratrol and Evaluation of Their Anti-Platelet Activity. Molbank, 2019(1), M1039. https://doi.org/10.3390/M1039