Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications
Abstract
1. Introduction
2. Results
2.1. Synthesis of Gel Microspheres
2.2. FTIR Spectra
2.3. Study of Electrical Surface Properties
2.4. Study of Sorption Capacity
2.5. Cytotoxicity Study
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Synthesis of Polyelectrolyte Microspheres via Inverse Suspension Polymerization
4.3. The Synthesis of Comparison Particles
4.4. Particle Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramstedt, M.; Cheng, N.; Azzaroni, O.; Mossialos, D.; Mathieu, H.J.; Huck, W.T.S. Synthesis and Characterization of Poly(3-Sulfopropylmethacrylate) Brushes for Potential Antibacterial Applications. Langmuir 2007, 23, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, S.; Jiang, S.; Xiong, M.; Luo, J.; Tang, J.; Ge, Z. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl. Mater. Interfaces 2011, 3, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Dop, R.A.; Neill, D.R.; Hasell, T. Sulfur-Polymer Nanoparticles: Preparation and Antibacterial Activity. ACS Appl. Mater. Interfaces 2023, 15, 20822–20832. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lorenzo, C.; Ramirez-Romero, A.; Peixoto, D.; Vivero-Lopez, M.; Rodríguez-Moldes, I.; Concheiro, A. Biomimetic Cell Membrane-Coated Scaffolds for Enhanced Tissue Regeneration. Adv. Mater. 2025, 37, e2507084. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Z.; Li, N.; Wang, X.; Zhou, F.; Liu, W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl. Mater. Interfaces 2014, 6, 20452–20463. [Google Scholar] [CrossRef]
- Cho, E.; Yun, S.; Lee, S.; Kim, M.; Choi, J.; Choi, S.E.; Lim, K.S.; Ha, S.J.; Yun, J.H.; Kim, H.O. Polymer- and Lipid-Based Nanostructures for Wound Healing with Barrier-Resolved Design. Pharmaceutics 2025, 17, 1501. [Google Scholar] [CrossRef]
- Dogaris, I.; Pylypchuk, I.; Henriksson, G.; Abbadessa, A. Polyelectrolyte complexes based on a novel and sustainable hemicellulose-rich lignosulphonate for drug delivery applications. Drug Deliv. Transl. Res. 2024, 14, 3452–3466. [Google Scholar] [CrossRef]
- Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers 2020, 12, 81. [Google Scholar] [CrossRef]
- Piombino, C.; Lange, H.; Sabuzi, F.; Galloni, P.; Conte, V.; Crestini, C. Lignosulfonate Microcapsules for Delivery and Controlled Release of Thymol and Derivatives. Molecules 2020, 25, 866. [Google Scholar] [CrossRef]
- Li, W.; Guo, G.; Yang, M.; Fan, Y.; Zhang, L.; Li, J.; Dong, X.; Wang, Y.; Lu, Z. Effects of different concentrations of canthaxanthin microencapsulated with gelatin or lignosulfonate on laying performance, yolk color of hens. Ital. J. Anim. Sci. 2024, 23, 398–408. [Google Scholar] [CrossRef]
- Laishevkina, S.; Kuleshova, T.; Panova, G.; Ivan’kova, E.; Iakobson, O.; Dobrodumov, A.; Shevchenko, N.; Yakimansky, A. Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. Int. J. Mol. Sci. 2023, 24, 2949. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhong, H.-J.; Ding, H.; Yu, B.; Ma, X.; Liu, X.; Chong, C.-M.; He, J. Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications. Polymers 2024, 16, 2755. [Google Scholar] [CrossRef]
- de Almeida Campos, L.A.; de Souza, J.B.; de Queiroz Macêdo, H.L.R.; Borges, J.C.; de Oliveira, D.N.; Cavalcanti, I.M.F. Synthesis of polymeric nanoparticles by double emulsion and pH-driven: Encapsulation of antibiotics and natural products for combating Escherichia coli infections. Appl. Microbiol. Biotechnol. 2024, 108, 351. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liao, Y.; Zhang, H.; Sun, W.; Zhou, W.; Lin, J.; Zhang, T.; Xie, S.; Wu, H.; Han, J.; et al. Gel microspheres enhance the stemness of ADSCs by regulating cell-ECM interaction. Biomaterials 2024, 309, 122616. [Google Scholar] [CrossRef] [PubMed]
- Osuga, K.; Hori, S.; Kitayoshi, H.; Khankan, A.A.; Okada, A.; Sugiura, T.; Murakami, T.; Hosokawa, K.; Nakamura, H. Embolization of high flow arteriovenous malformations: Experience with use of superabsorbent polymer microspheres. J. Vasc. Interv. Radiol. 2002, 13, 1125–1133. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Naghib, S.D.; Mirbaha, M.; Logushkova, K.; Bibette, J.; Bremond, N. Coupling atomization, emulsification, and polymerization steps for creating gel microspheres. Phys. Rev. Fluids. 2024, 8, 083604. [Google Scholar] [CrossRef]
- Liao, X.; Yao, J.; Li, J.; Lu, J.; Liu, J.; Chen, Y. Microarchitectonics of Gel Microspheres for Arterial Embolization with High Drug Loading and Digital Subtraction Angiography Real-Time Visibility. ACS Appl. Polym. Mater. 2025, 7, 14481–14496. [Google Scholar] [CrossRef]
- Shagymgereyeva, S.; Sarsenbekuly, B.; Kang, W.; Turtabayev, S. Performance Evaluation of Fluorescent Polymer Gel Microspheres as a Reservoir Conformance Control Agent. Gels 2025, 11, 85. [Google Scholar] [CrossRef]
- Laishevkina, S.G.; Druian, L.M.; Iakobson, O.D.; Ivan’kova, E.M.; Shabsel’s, B.M.; Shevchenko, N.N. Spherical Polymer Gels Containing Sulfonate Groups: Synthesis and Adsorption Properties. Colloid. J. 2025, 87, 22–31. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, D.; Han, S.; Jung, S.Y.; Choi, J.; Hong, J. Potential toxicity of polystyrene microplastic particles. Sci. Rep. 2020, 10, 7391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, J.; Shi, X.; Song, F.; Gao, W.; Liu, S. Stereocomplexation of Poly(Lactic acid) and Chemical Crosslinking of Ethylene Glycol Dimethacrylate (EGDMA) Double-Crosslinked Temperature/pH Dual Responsive Hydrogels. Polymers 2020, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wu, M.; Zhang, T.; Zhang, X.; Ren, W.; He, T. Enhancement of Starch Gel Properties Using Ionic Synergistic Multiple Crosslinking Extrusion Modification. Foods 2023, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, Y. Interfacial composition and formation of w/o microemulsion with different amphiphiles and oils. Colloids Surf. A Physicochem. Eng. Asp. 2004, 247, 99–103. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of Surface-Active Agents by HLB. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
- Kalinina, M.A.; Kulikov, L.A.; Cherednichenko, K.A.; Maximov, A.L.; Karakhanov, E.A. The Effect of Sulfonate Groups in the Structure of Porous Aromatic Frameworks on the Activity of Platinum Catalysts Towards Hydrodeoxygenation of Biofuel Components. Pet. Chem. 2021, 61, 1061–1070. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; J. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Laishevkina, S.G.; Iakobson, O.D.; Ivankova, E.M.; Shabsels, B.M.; Shevchenko, N.N. Influence of the structure of sulfo-containing polyelectrolyte matrices on the adsorption of Cu2+ ions. Colloid J. 2024, 86, 94–105. [Google Scholar] [CrossRef]
- Yang, J.; Jablonsky, M.; Mays, J. NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 2002, 43, 5125–5132. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Huang, R.; Tang, C.; Hu, C.; Ning, P.; Wang, F. Cytotoxicity and Genotoxicity of Polystyrene Micro- and Nanoplastics with Different Size and Surface Modification in A549 Cells. Int. J. Nanomed. 2022, 24, 4509–4523. [Google Scholar] [CrossRef]
- Meouche, W.; Branger, C.; Beurroies, I.; Denoyel, R.; Margaillan, A. Inverse suspension polymerization as a new tool for the synthesis of ion-imprinted polymers. Macromol. Rapid Commun. 2012, 33, 928–932. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, K.Y. Morphologies of microparticles of partially neutralized sodium polyacrylate by inverse suspension polymerization. Polym. Eng. Sci. 2018, 9, 1564–1574. [Google Scholar] [CrossRef]
- Khazdooz, L.; Zarei, A.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Synthesis of a Cation-Exchange Resin by Inverse Suspension Polymerization for Lactoferrin Extraction from Whey. ACS Omega 2023, 8, 30966–30975. [Google Scholar] [CrossRef] [PubMed]
- Iakobson, O.; Ivan’kova, E.; Shevchenko, N. Photonic Crystal Films Based on Polymer Particles with a Core/Shell Structure Responding to Ethanol. Langmuir 2023, 39, 9952–9962. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.N.; Pankova, G.A.; Laishevkina, S.G. Influence of the Structure of a Surface Layer of Methyl Methacrylate-Based Cationic Particles on Adsorption of Biomolecules. Colloid. J. RAS 2020, 82, 758–766. [Google Scholar] [CrossRef]
- Bakry, A.; Elmesallamy, S.M. Sulfonated polypropylene microparticles from waste as adsorbents for methylene blue: Kinetic, equilibrium, and thermodynamic studies. Sep. Sci. Technol. 2022, 57, 2374–2392. [Google Scholar] [CrossRef]
- Islam, S.; Hamdan, S.; Rusop, M.; Rahman, R.; Ahmed, A.S.; Mohd Idrus, M.A.M. Dimensional stability and water repellent efficiency measurement of chemically modified tropical light hardwood. BioResources 2012, 7, 1221–1231. [Google Scholar] [CrossRef]
- Valdivieso-Garcia, A.; Clarke, R.C.; Rahn, K.; Durette, A.; Macleod, D.L.; Gyles, C.L. Neutral red assay for measurement of quantitative vero cell cytotoxicity. Appl. Environ. Microbiol. 1993, 59, 1981–1983. [Google Scholar] [CrossRef]










| Samples | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No Comonomers | VA Comonomer | EA Comonomer | Crosslinker Mixture | + Undecyl Alcohol | ||||||||
| PSS-1 | PSPM-1 | PSS-2 | PSPM-2 | PSS-3 | PSPM-3 | PSS-4 | PSPM-4 | PSS-5 | PSPM-5 | |||
| Composition of the monomer mixture | SSNa 100 | SPM 100 | SSNa + VA 50:50 | SPM + VA 50:50 | SSNa + EA 50:50 | SPM + EA 50:50 | SSNa 100 | SPM 100 | SSNa 100 | SPM 100 | ||
| Property | ||||||||||||
| Yield, % | 86 | 89 | 60 | 67 | 64 | 63 | 69 | 63 | 93 | 97 | ||
| Gel fraction,% | 97 | 91 | 89 | 88 | 96 | 85 | 92 | 95 | 92 | 88 | ||
| D (80 wt. %), μm | 0–19 | 0–8 | 0–12 | 0–16 | 0–6 | 0–15 | 0–8 | 0–23 | 0–4 | 0–17 | ||
| Concentration of functional groups | ion exchange titration | mmol/g particles | 2.4 | 2.2 | 2.1 | 1.6 | 1.7 | 1.8 | 2.7 | 3.4 | 3.0 | 2.5 |
| mmol/m2 particles | 0.5 | 1.3 | 2.1 | 1.4 | 1.2 | 1.4 | 0.4 | 1.5 | 0.9 | 6.9 | ||
| conductometric titration | mmol/g particles | 2.3 | 2.4 | 2.3 | 2.1 | 1.8 | 1.9 | 2.8 | 3.3 | 2.9 | 2.4 | |
| mmol/m2 particles | 0.5 | 1.4 | 2.3 | 1.8 | 1.2 | 1.5 | 0.4 | 1.5 | 0.8 | 6.6 | ||
| Swelling degree, % | 470 | 300 | 840 | 325 | 570 | 370 | 845 | 540 | 345 | 425 | ||
| ξ-potential, mV (10−3 M NaCl) | −26 | −34 | −33 | −28 | −34 | −29 | −31 | −46 | −29 | −28 | ||
| Specific surface area, m2/g | 4.61 | 1.71 | 0.99 | 1.17 | 1.48 | 1.29 | 7.17 | 2.23 | 3.54 | 0.363 | ||
| Pore Volume, m3/g | 0.005 | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.008 | 0.003 | 0.004 | 0.001 | ||
| Mesopore diameter, nm | 3–12 | 3–11 | 3–11 | 2.9–13 | 3–11 | 3–15 | 2.7–11 | 2.7–12 | 3–12 | 2.9–14 | ||
| Micropore presence | − | + | − | − | − | − | − | − | − | − | ||
| Property | Samples | ||||
|---|---|---|---|---|---|
| NP1 P(St-SSNa) | SP1 P(St-SSNa) | SP2 P(St-SSNa) | MP1 P(St-SSNa) | MP2 P(St-SPM) | |
| D, μm (SEM) | 0.070 | 0.520 | 0.310 | 2–6 | 1–19 |
| D, μm (DLS) | 0.075 | 0.640 | 0.360 | 2–7 | – |
| PDI | 0.05 | 0.12 | 0.04 | 0.4 | – |
| Concentration of functional groups (conductometric titration), mmol/g particles | 0.24 | 0.18 | 0.19 | 0.039 | 0.027 |
| ξ-potential, mV (10−3 M NaCl) | −65 | −50 | −47 | −5 | −7 |
| PSS1 | PSS2 | PSS3 | PSPM1 | PSPM2 | PSPM3 | SP1 | SP2 | MP1 | MP2 | |
|---|---|---|---|---|---|---|---|---|---|---|
| Nonlinear Langmuir model | ||||||||||
| qeq max. exp., mmol/g | 2.22 | 1.86 | 1.65 | 1.86 | 1.97 | 1.85 | 0.45 | 0.20 | 0.0063 | 0.055 |
| qeq max. theor. Langmuir model, mmol/g | 2.22 | 1.82 | 1.65 | 1.84 | 1.95 | 1.85 | 0.44 | – | 0.0085 | 0.108 |
| R2 | 0.77 | 0.80 | 0.84 | 0.77 | 0.59 | 0.70 | 0.51 | – | 0.99 | 0.99 |
| Linear Freundlich model | ||||||||||
| 1/n | 0.88 | 0.78 | 0.68 | 0.87 | 1.17 | 0.98 | 1.81 | 2.08 | 0.44 | 0.98 |
| KF, mmol/g | 1.29 | 1.48 | 1.50 | 1.71 | 2.54 | 2.09 | 20.56 | 56.88 | 58.33 | 1.71 |
| R2 | 0.966 | 0.919 | 0.880 | 0.903 | 0.960 | 0.949 | 0.935 | 0.959 | 0.967 | 0.368 |
| qeq Max., mmol/g | PSS-based Particles | ||||
| PSS-1 | PSS-2 | PSS-3 | PSS-4 | PSS-5 | |
| 3.6 | 2.9 | 2.5 | 3.3 | 3.5 | |
| SPM-based Particles | |||||
| SPM-1 | SPM-2 | SPM-3 | SPM-4 | SPM-5 | |
| 3.2 | 2.6 | 2.4 | 0.2 | 2.0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Iakobson, O.D.; Ivan’kova, E.M.; Nashchekina, Y.; Shevchenko, N.N. Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications. Int. J. Mol. Sci. 2026, 27, 538. https://doi.org/10.3390/ijms27010538
Iakobson OD, Ivan’kova EM, Nashchekina Y, Shevchenko NN. Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications. International Journal of Molecular Sciences. 2026; 27(1):538. https://doi.org/10.3390/ijms27010538
Chicago/Turabian StyleIakobson, Olga D., Elena M. Ivan’kova, Yuliya Nashchekina, and Natalia N. Shevchenko. 2026. "Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications" International Journal of Molecular Sciences 27, no. 1: 538. https://doi.org/10.3390/ijms27010538
APA StyleIakobson, O. D., Ivan’kova, E. M., Nashchekina, Y., & Shevchenko, N. N. (2026). Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications. International Journal of Molecular Sciences, 27(1), 538. https://doi.org/10.3390/ijms27010538

